In this study, we report the synthesis and characterization of some heteroleptic Cr(III) complexes of the form [Cr(Phen)L](OTf), where Phen = 1,10-phenanthroline and L is either 2,2'-bipyridine (bpy) or its derivatives, such as 4,4'-dimethyl-2,2'-bipyridine (4,4'-DMB), 4,4'-dimethoxy-2,2'-bipyridine (4,4'-DMOB), 4,4'-di-butyl-2,2'-bipyridine (4,4'-dbpy), 5,5'-dimethyl-2,2'-bipyridine (5,5'-DMB), 4,4'-dimethoxycarbonyl-2,2'-bipyridine (4,4'-dmcbpy) or 1,10-phenanthroline derivatives, such as 5-methyl-1,10-phenanthroline (5-Me-Phen) and 4,7-dimethyl-1,10-phenanthroline (4,7-DMP). Heteroleptic complexes were prepared in two stages the intermediate [Cr(Phen)(CFSO)](CFSO) and five examples have been crystallographically characterized. Steady-state absorption and luminescence emission characteristics of these complexes were measured in 1 M HCl solutions. The luminescence quantum yield of these complexes was found to be the lowest for [Cr(Phen)(4,4'-dmcbpy)](OTf) and the highest for [Cr(Phen)(4,4'-DMB)](OTf) with values of 0.31 × 10 and 1.48 × 10, respectively. The calculated excited state energy, E, was found to vary within the narrow range of 163.1-165.0 kJ mol across the series. Transient absorption spectra in degassed, air-equilibrated, and oxygen-saturated 1 M HCl aqueous solutions were also measured at different time decays and demonstrated no significant differences, indicating the absence of any ion-separated species in the excited state. Excited-state decay traces at the wavelength of maximum absorption were used to calculate oxygen quenching rate constants, , which were found to be in the range 3.26-5.27 × 10 M s. Singlet oxygen luminescence photosensitized by these complexes was observed in DO, and its luminescence intensity at 1270 nm was used for the determination of singlet oxygen quantum yields for these complexes, which were in the range of 0.20-0.44, while the fraction of the excited E state quenched by oxygen was in the range of 0.22-0.68, and the efficiency of singlet oxygen production was in the range of 0.44-0.90. The mechanism by which the excited E state is quenched by oxygen is explained by a spin statistical model that predicts the balance between charge transfer and noncharge transfer deactivation pathways, which was represented by the parameter that was found to vary from 0.35 to 0.68 for this series of Cr(III) complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548418PMC
http://dx.doi.org/10.1021/acs.inorgchem.3c02343DOI Listing

Publication Analysis

Top Keywords

excited state
16
singlet oxygen
12
oxygen quenching
8
criii complexes
8
state quenched
8
quenched oxygen
8
complexes
7
oxygen
6
excited
5
range
5

Similar Publications

The opioid epidemic is a pervasive health issue and continues to have a drastic impact on the United States. This is primarily because opioids cause respiratory suppression and the leading cause of death in opioid overdose is respiratory failure ( , opioid-induced respiratory depression, OIRD). Opioid administration can affect the frequency and magnitude of inspiratory motor drive by activating µ-opioid receptors that are located throughout the respiratory control network in the brainstem.

View Article and Find Full Text PDF

Photophysical properties of condensed systems generally originate from collective contributions of all components in their stochastically fluctuated structures and are strongly influenced under strain of chromophores. To precisely identify how the stochastically fluctuated monomers synergistically manipulate the properties, we propose a statistic strategy over sufficient ab initio molecular dynamics (AIMD) samplings and for the first time uncover that synergistic oscillatory twisting (SOT) of neighboring under-strain monomers manipulates the bifunction of rubrene crystal.  The under-strain trunk SOT can regulate both singlet fission (SF) and triplet-triplet annihilation (TTA), enabling their coexistence and dominance switching by dynamically modulating the matching of excitation energies.

View Article and Find Full Text PDF

The Midas Touch by Iridium: A Second Near-Infrared Aggregation-Induced Emission-Active Metallo-Agent for Exceptional Phototheranostics of Breast Cancer.

J Am Chem Soc

January 2025

Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China.

Developing small organic molecular phototheranostic agents with second near-infrared (NIR-II) aggregation-induced emission (AIE) is paramount for the phototriggered diagnostic imaging and synchronous in situ therapy of cancer via an excellent balance of the excited states energy dissipations. In this study, a multifunctional iridium(III) complex is exploited by the coordination of an AIE-active N^N ancillary ligand with a trivalent iridium ion. The resultant complex DPTPzIr significantly outperforms its parent ligand in terms of absorption/emission wavelengths, reactive oxygen species (ROS) production, and photothermal conversion, which simultaneously endow DPTPzIr nanoparticles with matched absorption peak to commercial 808 nm laser, the longest NIR-II emission peak (above 1100 nm) among those previously reported AIE iridium(III) complexes, potentiated type-I ROS generation, and as high as 60.

View Article and Find Full Text PDF

Extending Exciton Diffusion Length via an Organic-Metal Platinum Complex Additive for High-Performance Thick-Film Organic Solar Cells.

Adv Mater

January 2025

Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China.

The long exciton diffusion length (L) plays an important role in promoting exciton dissociation, suppressing charge recombination, and improving the charge transport process, thereby improving the performance of organic solar cells (OSCs), especially in thick-film OSCs. However, the limited L hinders further improvement in device performance as the film thickness increases. Here, an organic-metal platinum complex, namely TTz-Pt, is synthesized and served as a solid additive into the D18-Cl:L8-BO system.

View Article and Find Full Text PDF

Background: There is growing interest in use of transcutaneous spinal stimulation (TSS) for people with neurologic conditions both to augment volitional control (by facilitating motoneuron excitability), and to decrease spasticity (by activating inhibitory networks). Various electrode montages are used during TSS, with little understanding of how electrode position influences spinal circuit activation. We sought to identify the thoracolumbar electrode montage associated with the most robust activation of spinal circuits by comparing posterior root-muscle reflexes (PRM reflexes) elicited by 6 montages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!