Biogeochemical sulfur cycling in sulfidic karst systems is largely driven by abiotic and biological sulfide oxidation, but the fate of elemental sulfur (S ) that accumulates in these systems is not well understood. The Frasassi Cave system (Italy) is intersected by a sulfidic aquifer that mixes with small quantities of oxygen-rich meteoric water, creating Proterozoic-like conditions and supporting a prolific ecosystem driven by sulfur-based chemolithoautotrophy. To better understand the cycling of S in this environment, we examined the geochemistry and microbiology of sediments underlying widespread sulfide-oxidizing mats dominated by Beggiatoa. Sediment populations were dominated by uncultivated relatives of sulfur cycling chemolithoautotrophs related to Sulfurovum, Halothiobacillus, Thiofaba, Thiovirga, Thiobacillus, and Desulfocapsa, as well as diverse uncultivated anaerobic heterotrophs affiliated with Bacteroidota, Anaerolineaceae, Lentimicrobiaceae, and Prolixibacteraceae. Desulfocapsa and Sulfurovum populations accounted for 12%-26% of sediment 16S rRNA amplicon sequences and were closely related to isolates which carry out autotrophic S disproportionation in pure culture. Gibbs energy (∆G ) calculations revealed that S disproportionation under in situ conditions is energy yielding. Microsensor profiles through the mat-sediment interface showed that Beggiatoa mats consume dissolved sulfide and oxygen, but a net increase in acidity was only observed in the sediments below. Together, these findings suggest that disproportionation is an important sink for S generated by microbial sulfide oxidation in this oxygen-limited system and may contribute to the weathering of carbonate rocks and sediments in sulfur-rich environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gbi.12574 | DOI Listing |
Water Res
January 2025
Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China. Electronic address:
Anoxygenic photosynthetic bacteria (APB) have been frequently detected as a photoautotrophic Fe-carbon cycling drivers in photic and anoxic environment. However, the potential capacity of these bacteria for photoheterotrophic extracellular reduction of iron-containing minerals and their impact on the transformation of organic pollutants remain currently unknown. This study investigated the capacity of R.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
Pesticide application is essential for stabilizing agricultural production. However, the effects of increasing pesticide diversity on soil microbial functions remain unclear, particularly under varying nitrogen (N) fertilizer management practices. In this study, we investigated the stochasticity of soil microbes and multitrophic networks through amplicon sequencing, assessed soil community functions related to carbon (C), N, phosphorus (P), and sulfur (S) cycling, and characterized the dominant bacterial life history strategies via metagenomics along a gradient of increasing pesticide diversity under two N addition levels.
View Article and Find Full Text PDFChemMedChem
January 2025
IIT Roorkee: Indian Institute of Technology Roorkee, Chemistry, Department of Chemistry, 247667, Roorkee, INDIA.
The development of small molecule-based drugs emerged as a cornerstone of modern drug discovery. Structural activity relationship (SAR) studies in medicinal chemistry are crucial for lead optimization, where a subtle change in the substituent can significantly alter its binding affinity with the biological target. Herein, a highly efficient single-atom substitution (SAS) approach has been developed, where sulfur for oxygen strategy is utilized as a powerful molecular editing technique to identify N-vinyl Indole-thiobarbituric acid (6a) as a novel small molecule-based scaffold with tunable photophysical and antiproliferative activities.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
The shuttling effect of polysulfides in lithium-sulfur batteries seriously affects their performance. Herein, NiFeO derived from natural hematite is coated on a PP separator (NFO@PP), which can effectively block the shuttling of polysulfides and has strong adsorption and catalytic capabilities. The NFO@PP cell has an initial capacity of up to 1258.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
The replacement of the thermodynamically unfavorable anodic oxygen evolution reaction (OER) with a more favorable organic oxidation reaction, such as the anodic oxidation of benzylamine, has garnered significant interest in hybrid water electrolyzer cells. This approach promises the production of value-added chemicals alongside hydrogen fuel generation, improving overall energy efficiency. However, achieving high current density for benzylamine oxidation without interference from OER remains a challenge, limiting the practical efficiency of the electrolyzer cell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!