Two-dimensional metal-organic framework nanosheets are attractive as peroxidase mimicking nanocatalysts due to their rich chemical functional groups, large surface area, high porosity, and accessible active sites. In this study, we synthesized FeCu bifunctional 2D MOF nanosheets using a solvothermal method. Fe and Cu ions were added as metal precursors, while organic amine and acid served as the organic ligands to construct the FeCu-MOF nanosheets. These nanosheets demonstrated robust peroxidase-like catalytic activities and were employed to develop a visual detection system for multiple targets, such as glucose and kanamycin. In the detection mechanism, glucose was oxidized into gluconic acid by glucose oxidase (GOx), leading to the generation of HO. When HO is present, the FeCu-MOF NSs demonstrate high intrinsic peroxidase-like activity, which might catalytically oxidize 3,3',5,5'-tetramethylbenzidine (TMB) into a blue-coloured oxTMB product with a strong UV absorption at 654 nm. Subsequently, kanamycin was added to the above sensing system. The kanamycin strongly interacted with the FeCu-MOF NSs through H-bonding and blocked electron transfer, resulting in a colour change of the solution from blue to colourless with a weak UV absorption at 654 nm. Under the optimal conditions, the proposed colorimetric sensor exhibits an excellent linear response to glucose and kanamycin over the 0.25-5 μM and 0.02-0.1 μM ranges, respectively. The proposed colorimetric assay detection limits for glucose and kanamycin were found to be as low as 0.1 μM and 8 nM, respectively, and such a sensor shows excellent selectivity and sensitivity against different potential interferents. Thus, our proposed colorimetric assay was satisfactory when applied to glucose and kanamycin detection in agricultural and livestock husbandry samples.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3an01242eDOI Listing

Publication Analysis

Top Keywords

glucose kanamycin
20
proposed colorimetric
12
peroxidase-like activity
8
kanamycin detection
8
fecu-mof nss
8
absorption 654
8
colorimetric assay
8
glucose
7
kanamycin
7
exceptional peroxidase-like
4

Similar Publications

Endophytic bacteria in pedicels: isolation, screening and analysis of antagonistic activity against nectar yeasts.

Front Microbiol

October 2024

Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.

, an ancient plant species endemic to Yunnan Province, China, remains underexplored in terms of its endophytic bacterial communities. The plant tissue pedicel serves as the connection between the flower and the stem, not only delivers nutrients but also transmits metabolic substances from endophytic bacteria to the nectar during long-term microbial colonization and probably improves the antagonistic activity of nectar against yeast. Hence, 138 isolates of endophytic bacteria have been isolated in this study from the pedicels of 12- and 60-year-old .

View Article and Find Full Text PDF

Production of recombinant human insulin from a promising Pseudomonas fluorescens cell factory and its kinetic modeling.

Int J Biol Macromol

September 2024

Enzyme & Microbial Technology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India.

Insulin intake is recommended for diabetics in addition to a proper diet and lifestyle to maintain adequate blood glucose level. Currently, there is a need for an alternative expression system for insulin production as the current expression systems may not meet the growing demand due to various constraints. Here, we demonstrate the synthesis of human insulin in an unconventional expression system based on Pseudomonas fluorescens, a BSL 1 bacterium.

View Article and Find Full Text PDF

CSV86 displays the unique property of preferential utilization of aromatic compounds over simple carbon sources like glucose and glycerol and their co-metabolism with organic acids. Well-characterized growth conditions, aromatic compound metabolic pathways and their regulation, genome sequence, and advantageous eco-physiological traits (indole acetic acid production, alginate production, fusaric acid resistance, organic sulfur utilization, and siderophore production) make it an ideal host for metabolic engineering. Strain CSV86 was engineered for Carbaryl (1-naphthyl--methylcarbamate) degradation via salicylate-catechol route by expression of a Carbaryl hydrolase (CH) and a 1-naphthol 2-hydroxylase (1NH).

View Article and Find Full Text PDF

A development of grazing resistance in Escherichia coli K-12 was examined in the presence of a bacterivorous protist, Spumella sp. TGKK2. Two transformants were generated from E.

View Article and Find Full Text PDF

Apramycin is a widely used aminoglycoside antibiotic with applications in veterinary medicine. It is composed of a 4-amino-4-deoxy-d-glucose moiety and the pseudodisaccharide aprosamine, which is an adduct of 2-deoxystreptamine and an unusual eight-carbon bicyclic dialdose. Despite its extensive study and relevance to medical practice, the biosynthetic pathway of this complex aminoglycoside nevertheless remains incomplete.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!