Biomarkers for ionising radiation exposure have great utility in scenarios where there has been a potential exposure and physical dosimetry is missing or in dispute, such as for occupational and accidental exposures. Biomarkers that respond as a function of dose are particularly useful as biodosemeters to determine the dose of radiation to which an individual has been exposed. These dose measurements can also be used in medical scenarios to track doses from medical exposures and even have the potential to identify an individual's response to radiation exposure that could help tailor treatments. The measurement of biomarkers of exposure in medicine and for accidents, where a larger number of samples would be required, is limited by the throughput of analysis (i.e. the number of samples that could be processed and analysed), particularly for microscope-based methods, which tend to be labour-intensive. Rapid analysis in an emergency scenario, such as a large-scale accident, would provide dose estimates to medical practitioners, allowing timely administration of the appropriate medical countermeasures to help mitigate the effects of radiation exposure. In order to improve sample throughput for biomarker analysis, much effort has been devoted to automating the process from sample preparation through automated image analysis. This paper will focus mainly on biological endpoints traditionally analysed by microscopy, specifically dicentric chromosomes, micronuclei and gamma-H2AX. These endpoints provide examples where sample throughput has been improved through automated image acquisition, analysis of images acquired by microscopy, as well as methods that have been developed for analysis using imaging flow cytometry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10720693 | PMC |
http://dx.doi.org/10.1093/rpd/ncad060 | DOI Listing |
R I Med J (2013)
February 2025
Alpert Medical School of Brown University, Department of Medicine, Division of Cardiology, Rhode Island Hospital.
Cardiac Positron Emission Tomography (PET) can be used for the assessment of myocardial perfusion. Compared to other cardiac imaging techniques, notably Single Photon Emission Computer Tomography (SPECT), cardiac PET offers superior image resolution, higher accuracy, quantitative measures of myocardial perfusion, lower radiation exposure, and shorter image acquisition time. However, PET tends to be costlier and less widely available than SPECT due to the specialized equipment needed for generating the necessary radiotracers.
View Article and Find Full Text PDFR I Med J (2013)
February 2025
Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence RI.
Coronary artery disease (CAD) remains a leading cause of morbidity and mortality worldwide, necessitating advancements in diagnostic techniques. Coronary CT angiography (CCTA) has emerged as a pivotal non-invasive tool for evaluating coronary artery anatomy and detecting atherosclerotic plaque burden with high spatial resolution. This review explores the evolution of CCTA, highlighting its technological advancements, clinical applications, and challenges.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, 154000, People's Republic of China.
Background: Doxorubicin (DOX) is a chemotherapeutic agent widely used for cancer treatment and has non-negligible cardiotoxicity. Some previous studies have reported that cannabidiol (CBD) has cardioprotective effects. In this study, we evaluated the protective effects of CBD against DOX-induced cardiomyocyte injury, and explored the downstream molecular mechanism.
View Article and Find Full Text PDFJ Comput Assist Tomogr
January 2025
Department of Radiology, College of Medicine, University of Florida, Gainesville, FL.
Purpose: This study evaluated beam quality and radiation dosimetry of a CT scanner equipped with a novel detector and filtration technology called PureVision Optics (PVO). PVO features miniaturized electronics, a detector cut with microblade technology, and increased filtration in order to increase x-ray detection and reduce image noise.
Methods: We assessed the performance of two similar 320-detector CT scanners: one equipped with PVO and one without.
The coupling effect of gamma-ray radiation and 532 nm nanosecond laser radiation on optical coatings and substrates was investigated. Fused silica and S-BSL7 glass with 532 nm high reflectivity (HR) coatings were irradiated using Co gamma-ray source at a dose rate of 1 Gy/s for a total dose of 1-500 kGy. After irradiation, the samples were subjected to raster scan testing using a laser with a pulse width of approximately 8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!