Implications of "flash" radiotherapy for biodosimetry.

Radiat Prot Dosimetry

Department of Radiology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, United States.

Published: September 2023

Extremely high dose rate radiation delivery (FLASH) for cancer treatment has been shown to produce less damage to normal tissues while having the same radiotoxic effect on tumor tissue (referred to as the FLASH effect). Research on the FLASH effect has two very pertinent implications for the field of biodosimetry: (1) FLASH is a good model to simulate delivery of prompt radiation from the initial moments after detonating a nuclear weapon and (2) the FLASH effect elucidates how dose rate impacts the biological mechanisms that underlie most types of biological biodosimetry. The impact of dose rate will likely differ for different types of biodosimetry, depending on the specific underlying mechanisms. The greatest impact of FLASH effects is likely to occur for assays based on biological responses to radiation damage, but the consequences of differential effects of dose rates on the accuracy of dose estimates has not been taken into account.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rpd/ncad062DOI Listing

Publication Analysis

Top Keywords

dose rate
12
flash
6
dose
5
implications "flash"
4
"flash" radiotherapy
4
biodosimetry
4
radiotherapy biodosimetry
4
biodosimetry extremely
4
extremely high
4
high dose
4

Similar Publications

Objective: We aimed to develop a highly interpretable and effective, machine-learning based risk prediction algorithm to predict in-hospital mortality, intubation and adverse cardiovascular events in patients hospitalised with COVID-19 in Australia (AUS-COVID Score).

Materials And Methods: This prospective study across 21 hospitals included 1714 consecutive patients aged ≥ 18 in their index hospitalization with COVID-19. The dataset was separated into training (80%) and test sets (20%).

View Article and Find Full Text PDF

Objectives: To evaluate the efficacy and safety of first-line targeted synthetic disease-modifying anti-rheumatic drugs (tsDMARDs) in patients with rheumatoid arthritis (RA) and chronic kidney disease (CKD).

Methods: This retrospective cohort study included 216 patients with RA prescribed their first tsDMARDs at two hospitals between 2013 and 2022. Dose reduction and contraindication guidelines for tsDMARDs according to kidney function were followed.

View Article and Find Full Text PDF

Background: Fecal microbiota, live-jslm (RBL; REBYOTA®), is the first single-dose, broad consortia, microbiota-based live biotherapeutic approved by the US Food and Drug Administration to prevent recurrent Clostridioides difficile infection (rCDI) in adults following standard-of-care antimicrobials. Inflammatory bowel disease (IBD) is a common risk factor for rCDI, yet patients with IBD are often excluded from prospective trials. This subgroup analysis of PUNCH CD3-OLS (NCT03931941) evaluated the safety and efficacy of RBL in participants with rCDI and IBD.

View Article and Find Full Text PDF

Background: Real-world data regarding patients with non-small cell lung cancer (NSCLC) with EGFR exon 20 insertion (ex20ins) mutations receiving mobocertinib are limited. This study describes these patients' characteristics and outcomes.

Methods: A chart review was conducted across three countries (Canada, France, and Hong Kong), abstracting data from eligible patients (NCT05207423).

View Article and Find Full Text PDF

Background: A broad-spectrum anti-SARS-CoV-2 monoclonal antibody (mAb), SA55, is highly effective against SARS-CoV-2 variants. This trial aimed at demonstrating the safety, tolerability, local drug retention and neutralizing activity, systemic exposure level, and immunogenicity of the SA55 nasal spray in healthy individuals.

Methods: This phase I, dose-escalation clinical trial combined an open-label design with a randomized, controlled, double-blind design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!