In general, although abundant literature studies are available on epoxy resin systems, a complete description of the curing kinetics in epoxy-cyanate ester composites relevant to the microelectronics industry is still lacking. Herein, curing behaviors of Ajinomoto build-up films, which are epoxy/silica composites, were studied by the non-isothermal differential scanning calorimetry method, and then, three non-isothermal curing kinetics models and model-free curing methods were used to analyze curing behaviors. In addition, a copper layer was also deposited onto the surface of the build-up film, and its interfacial adhesion property was also analyzed at different pre-curing conditions. The results showed that the curing reaction of the build-up film contains two curing reaction processes, and the first curing process is suited for the autocatalytic curing model, while the other curing process is suited for the Kamal curing kinetics model. Three model-free curing methods were used to calculate the activating energy at different degrees of curing, which indicated that the activating energy is variable during the whole curing process. The interfacial adhesion strength between the build-up film and copper layer decreased with the increase in the degree of curing, which is attributed to the contribution of mechanical anchoring. This work will offer guidance in curing behaviors for improving interfacial bonding force and controlling warpage behavior for chip substrates in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500575PMC
http://dx.doi.org/10.1021/acsomega.3c04371DOI Listing

Publication Analysis

Top Keywords

curing
17
curing kinetics
16
curing behaviors
12
build-up film
12
curing process
12
epoxy-cyanate ester
8
model-free curing
8
curing methods
8
copper layer
8
interfacial adhesion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!