Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Direct-write printing has contributed tremendously to additive manufacturing; in particular extrusion based printing where it has extended the range of materials for 3D printing and thus enabled use across many more sectors. The printing inks for direct-write printing however, need careful synthesis and invariably undergo extensive preparation before being able to print. Hence, new ink synthesis efforts are required every time a new material is to be printed; this is particularly challenging for low storage modulus (G') materials like silicones, especially at higher resolutions (under 10 µm). Here we report the development of a precise (< 10 µm) 3D printable polymer, with which we 3D print micromoulds which are filled with standard silicones like polydimethylsiloxane (PDMS) and left to cure at room temperature. The proof of concept is demonstrated using a simple water soluble polymer as the mould material. The approach enables micrometre scale silicone structures to be prototyped with ease, away from the cleanroom.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499758 | PMC |
http://dx.doi.org/10.1016/j.addma.2022.103019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!