Introduction: Despite the existence of numerous clinical techniques for identifying neurological brain disorders in their early stages, Electroencephalogram (EEG) data shows great promise as a means of detecting Alzheimer's disease (AD) at an early stage. The main goal of this research is to create a reliable and accurate clinical decision support system leveraging EEG signal processing to detect AD in its initial phases.

Methods: The research utilized a dataset consisting of 35 neurotypical individuals, 31 patients with mild AD, and 22 patients with moderate AD. Data were collected while participants were at rest. To extract features from the EEG signals, a band-pass filter was applied to the dataset and the Empirical Mode Decomposition (EMD) technique was employed to decompose the filtered signals. The EMD technique was then leveraged to generate feature vectors by combining multiple signal features, thereby enhancing diagnostic performance. Various artificial intelligence approaches were also explored and compared to identify features of the extracted EEG signals distinguishing mild AD, moderate AD, and neurotypical cases. The performance of the classifiers was evaluated using k-fold cross-validation and leave-one-subject-out (LOSO) cross-validation methods.

Results: The results of this study provided valuable insights into potential avenues for the early diagnosis of AD. The performance of the various offered methodologies has been compared and evaluated by computing the overall diagnosis precision, recall, and accuracy. The proposed methodologies achieved a maximum classification accuracy of 99.9 and 94.8% for k-fold and LOSO cross-validation techniques, respectively.

Conclusion: The study aims to assess and compare different proposed methodologies and determine the most effective combination approach for the early detection of AD. Our research findings strongly suggest that the proposed diagnostic support technique is a highly promising supplementary tool for discovering prospective diagnostic biomarkers that can greatly aid in the early clinical diagnosis of AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501399PMC
http://dx.doi.org/10.3389/fnhum.2023.1190203DOI Listing

Publication Analysis

Top Keywords

clinical decision
8
decision support
8
support system
8
eeg signals
8
emd technique
8
loso cross-validation
8
proposed methodologies
8
early
5
eeg-based clinical
4
system alzheimer's
4

Similar Publications

How Outcome Prediction Could Aid Clinical Practice.

Br J Hosp Med (Lond)

January 2025

Department of Surgery & Cancer, Imperial College London, London, UK.

Predictive algorithms have myriad potential clinical decision-making implications from prognostic counselling to improving clinical trial efficiency. Large observational (or "real world") cohorts are a common data source for the development and evaluation of such tools. There is significant optimism regarding the benefits and use cases for risk-based care, but there is a notable disparity between the volume of clinical prediction models published and implementation into healthcare systems that drive and realise patient benefit.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a common neurodegenerative condition that can lead to problems swallowing. Individuals living with PD may be unable to take medications orally for various reasons including acute or chronic dysphagia, non-PD related causes and being placed nil-by-mouth for elective reasons. This article outlines a five-step approach to managing an individual living with PD who is unable to take oral medication acutely.

View Article and Find Full Text PDF

Background: Sports fatigue in soccer athletes has been shown to decrease neural activity, impairing cognitive function and negatively affecting motor performance. Transcranial direct current stimulation (tDCS) can alter cortical excitability, augment synaptic plasticity, and enhance cognitive function. However, its potential to ameliorate cognitive impairment during sports fatigue remains largely unexplored.

View Article and Find Full Text PDF

Aims: To describe the sonographic features of active Charcot neuro-osteoarthropathy (CNO) and assess the potential role of ultrasound in identifying those with active CNO.

Methods: Using a prospective case-series study design we assessed the sonographic features of 14 patients with a diagnosis of diabetes presenting with clinical signs and symptoms suspicious for active CNO. Patients had standard weight-bearing plain X-Ray and, where possible, MRI to evaluate the presence of active CNO.

View Article and Find Full Text PDF

Detection and quantification of disease-related biomarkers in wastewater samples, denominated Wastewater-based Surveillance (WBS), has proven a valuable strategy for studying the prevalence of infectious diseases within populations in a time- and resource-efficient manner, as wastewater samples are representative of all cases within the catchment area, whether they are clinically reported or not. However, analysis and interpretation of WBS datasets for decision-making during public health emergencies, such as the COVID-19 pandemic, remains an area of opportunity. In this article, a database obtained from wastewater sampling at wastewater treatment plants (WWTPs) and university campuses in Monterrey and Mexico City between 2021 and 2022 was used to train simple clustering- and regression-based risk assessment models to allow for informed prevention and control measures in high-affluence facilities, even if working with low-dimensionality datasets and a limited number of observations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!