As coral reef ecosystems experience unprecedented change, effective monitoring of reef features supports management, conservation, and intervention efforts. Omic techniques show promise in quantifying key components of reef ecosystems including dissolved metabolites and microorganisms that may serve as invisible sensors for reef ecosystem dynamics. Dissolved metabolites are released by reef organisms and transferred among microorganisms, acting as chemical currencies and contributing to nutrient cycling and signaling on reefs. Here, we applied four omic techniques (taxonomic microbiome via amplicon sequencing, functional microbiome via shotgun metagenomics, targeted metabolomics, and untargeted metabolomics) to waters overlying Florida's Coral Reef, as well as microbiome profiling on individual coral colonies from these reefs to understand how microbes and dissolved metabolites reflect biogeographical, benthic, and nutrient properties of this 500-km barrier reef. We show that the microbial and metabolite omic approaches each differentiated reef habitats based on geographic zone. Further, seawater microbiome profiling and targeted metabolomics were significantly related to more reef habitat characteristics, such as amount of hard and soft coral, compared to metagenomic sequencing and untargeted metabolomics. Across five coral species, microbiomes were also significantly related to reef zone, followed by species and disease status, suggesting that the geographic water circulation patterns in Florida also impact the microbiomes of reef builders. A combination of differential abundance and indicator species analyses revealed metabolite and microbial signatures of specific reef zones, which demonstrates the utility of these techniques to provide new insights into reef microbial and metabolite features that reflect broader ecosystem processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504872 | PMC |
http://dx.doi.org/10.1093/pnasnexus/pgad287 | DOI Listing |
Integr Zool
January 2025
Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China.
Over the past few decades, ocean hypoxia has been increasing due to human activities. Hypoxic stress, characterized by a reduced level of dissolved oxygen, is an escalating threat to marine ecosystems, with potentially devastating effects on the viability of endangered species such as the tri-spine horseshoe crab Tachypleus tridentatus. Even though this species is remarkably resilient to low oxygen levels, persistent hypoxia can negatively impact its population's survivability.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan, 333, Taiwan; Clinical Proteomics Core Laboratory, LinKou Chang Gung Memorial Hospital, Taoyuan, 333423, Taiwan. Electronic address:
Background: Tissue metabolomics analysis, alongside genomics and proteomics, offers crucial insights into the regulatory mechanisms of tumorigenesis. To enhance metabolite detection sensitivity, chemical isotope labeling (CIL) techniques, such as dansylation, have been developed to improve metabolite separation and ionization in mass spectrometry (MS). However, the dissolution of hydrophobic derivatized metabolites in solvents with high acetonitrile content limits the use of liquid chromatography (LC) systems with small-volume reversed-phase (RP) columns.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Water Resources Research Institute of Shandong Province, Shandong Province Key Lab Water Resources & Environment, Jinan, 250000, China.
The fate of the pollutants in aquatic environment is closely related to colloids, and the carrier effect of colloids on pollutants not only affects their bioaccumulation, but may also affect their toxicity. In this study, the effects of natural colloid with different components on the biological toxicity of benzophenone-3 (BP3) to zebrafish larvae (Diano rerio) were studied. BP3 caused oxidative stress damage, thyroid system disorders and neurotoxicity in zebrafish larvae.
View Article and Find Full Text PDFMar Environ Res
December 2024
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
Lipophilic phycotoxins (LPTs) are toxic and lipophilic secondary metabolites produced by toxic microalgae, which pose a serious threat to marine shellfish culture industries. LPTs were systematically investigated in bottom seawater, suspended particulate matter (SPM), sediment, and sediment porewater of Laizhou Bay, a typical mariculture bay in China, to understand the chemical diversity and environment behaviors of LPTs in the benthic environments. Okadaic acid (OA), pectenotoxin-2 (PTX2), dinophysistoxin-1 (DTX1), azaspiracid-2 (AZA2), gymnodimine (GYM), pectenotoxin-2 seco acid (PTX2 SA), 7-epi- pectenotoxin-2 seco acid (7-epi-PTX2 SA), 13-desmethylspirolide C (SPX1), yessotoxin (YTX) and homo YTX (h-YTX) were detected in the benthic environment of Laizhou Bay in spring, indicating that LPTs are rich in chemical diversity.
View Article and Find Full Text PDFACS Omega
December 2024
State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!