The World Health Organization has designated carbapenem-resistant (CRAB) as a "critical" pathogen on the global priority list of antibiotic-resistant bacteria. This study aims to discuss the molecular epidemiology of CRAB isolates in Turkiye in the last 12 years and the prevalence of gene regions associated with resistance or pathogenesis using a systematic review method. Our study consists of a literature search, determination of eligibility and exclusion criteria, qualitative analysis of studies, data extraction, and statistical analysis. All studies were analyzed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Guidelines. The incidence rates of blaOXA-23, blaOXA-23-like, blaOXA-24/40, blaOXA-24/40-like, blaOXA-51, blaOXA-51-like, blaOXA-58, and blaOXA-58-like genes in CRAB strains were 76.4%, 68.6%, 1.2%, 3.4%, 97.0%, 98.6%, 8.4%, and 17.1%, respectively. It was determined that the prevalence of the blaOXA-23 and blaOXA-58 gene regions showed a statistically significant change over the years. Due to the high prevalence of A. baumannii strains carrying the blaOXA-23 variant, it is necessary to follow its geographical distribution and transposon and plasmid movements. Based on available data, molecular surveillance of CRAB strains should be standardized. In addition, sterilization and disinfection processes applied within the scope of an effective struggle against CRAB strains that can remain live on surfaces for a long time should be reviewed frequently.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500232PMC
http://dx.doi.org/10.14744/nci.2022.17003DOI Listing

Publication Analysis

Top Keywords

crab strains
12
molecular epidemiology
8
isolates turkiye
8
systematic review
8
gene regions
8
analysis studies
8
crab
5
epidemiology carbapenem-resistant
4
carbapenem-resistant isolates
4
turkiye systematic
4

Similar Publications

Unlabelled: Carbapenem-resistant spp. pose a significant challenge in clinical settings due to limited treatment options for nosocomial infections. Carbapenem-hydrolyzing class D beta-lactamases are the primary cause for carbapenem resistance, while metallo-beta-lactamases (MBLs) New Delhi metallo beta-lactamase (NDM) and imipenemase (IMP) also contribute.

View Article and Find Full Text PDF

Background: Active screening programs and early detection of asymptomatic carriers are effective in preventing carbapenem-resistant Acinetobacter baumannii (CRAB) dissemination in healthcare facilities. This study aims to identify risk factors associated with CRAB carriage among patients upon admission to an acute care hospital.

Methods: A case-case-control study was conducted at an acute care hospital.

View Article and Find Full Text PDF

Chitosan is a promising biopolymer with wide range of applications. It is the deacetylated product of chitin. Commercially, it is produced from chitin via a harsh thermochemical process that has several shortcomings and heterogenous deacetylation product.

View Article and Find Full Text PDF

is Involved in the Decrease of Biofilm by the Antimicrobial Peptide Cec4.

Drug Des Devel Ther

December 2024

Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People's Republic of China.

Purpose: The emergence of carbapenem-resistant (CRAB) poses great difficulties in clinical treatment, and has been listed by the World Health Organization as a class of pathogens in urgent need of new antibiotic development. In our previous report, the novel antimicrobial peptide Cec4 showed great potential in decreasing the clinical CRAB biofilm, but its mechanism of action is still illusive. Therefore, in order to evaluate the clinical therapeutic potential of Cec4, it is necessary to explore the mechanism of how Cec4 decreases mature biofilms.

View Article and Find Full Text PDF

Mortality and genetic diversity of antibiotic-resistant bacteria associated with bloodstream infections: a systemic review and genomic analysis.

BMC Infect Dis

December 2024

Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China.

Background: Bloodstream infections (BSIs) caused by antibiotic-resistant bacteria (ARB) represent a significant disease burden worldwide. However, a comprehensive analysis of the mortality rates and global epidemiology across different ARB species associated with BSIs is currently lacking.

Methods: We conducted a systematic review by searching multiple databases (PubMed, Web of Science, and Embase) for studies reporting ARB-related BSIs data up to June 19, 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!