Atom probe tomography.

Nat Rev Methods Primers

Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney, New South Wales, Australia.

Published: January 2021

Atom probe tomography (APT) provides three-dimensional compositional mapping with sub-nanometre resolution. The sensitivity of APT is in the range of parts per million for all elements, including light elements such as hydrogen, carbon or lithium, enabling unique insights into the composition of performance-enhancing or lifetime-limiting microstructural features and making APT ideally suited to complement electron-based or X-ray-based microscopies and spectroscopies. Here, we provide an introductory overview of APT ranging from its inception as an evolution of field ion microscopy to the most recent developments in specimen preparation, including for nanomaterials. We touch on data reconstruction, analysis and various applications, including in the geosciences and the burgeoning biological sciences. We review the underpinnings of APT performance and discuss both strengths and limitations of APT, including how the community can improve on current shortcomings. Finally, we look forwards to true atomic-scale tomography with the ability to measure the isotopic identity and spatial coordinates of every atom in an ever wider range of materials through new specimen preparation routes, novel laser pulsing and detector technologies, and full interoperability with complementary microscopy techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502706PMC
http://dx.doi.org/10.1038/s43586-021-00047-wDOI Listing

Publication Analysis

Top Keywords

atom probe
8
probe tomography
8
specimen preparation
8
apt
6
tomography atom
4
tomography apt
4
apt three-dimensional
4
three-dimensional compositional
4
compositional mapping
4
mapping sub-nanometre
4

Similar Publications

The computational study of ligand binding to a target protein provides mechanistic insight into the molecular determinants of this process and can improve the success rate of drug design. All-atom molecular dynamics (MD) simulations can be used to evaluate the binding free energy, typically by thermodynamic integration, and to probe binding mechanisms, including the description of protein conformational dynamics. The advantages of MD come at a high computational cost, which limits its use.

View Article and Find Full Text PDF

Isotopic pulse-labelling of photosynthate allows tracing of carbon (C) from tree canopies to belowground biota and calculations of its turnover in roots and recipient soil microorganisms. A high concentration of label is desirable, but is difficult to achieve in field studies of intact ecosystem patches with trees. Moreover, root systems of trees overlap considerably in most forests, which requires a large labelled area to minimize the impact of C allocated belowground by un-labelled trees.

View Article and Find Full Text PDF

Synthesis of Sulfenamides via Photoredox N-S Coupling of Dialkyl Azodicarboxylates and Thiols.

Org Lett

December 2024

College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.

We herein report a photoredox N-S coupling reaction between dialkyl azodicarboxylates and thiols to access sulfenamide scaffolds. This reaction proceeds under mild, green, and operationally simple conditions, offering a broad scope of sulfenamides with high yields and excellent atom efficiency. Mechanistic investigations revealed this reaction followed a photoinitiated radical pathway in which iodide plays a crucial role as both a radical initiator and a single-electron reductant.

View Article and Find Full Text PDF

Carbon nitride grafted with single-atom manganese and 2-hydroxy-4,6-dimethylpyrimidine: A visible-light-driven photocatalyst for enhanced ozonation of organic pollutants.

J Colloid Interface Sci

December 2024

State Key Laboratory of Photocatalysis On Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, PR China. Electronic address:

The development of durable and highly efficient visible-light-driven photocatalysts is essential for the photocatalytic ozonation process towards degrading organic pollutants. This study presents CN-MA, a novel photocatalyst synthesized by grafting carbon nitride (CN) with single-atom Mn and 2-hydroxy-4,6-dimethylpyrimidine (HDMP) via one-step thermal polymerization. Experimental characterization and theoretical calculation results reveal that incorporating single-atom Mn and HDMP into CN alters the charge density distribution on the heptazine rings.

View Article and Find Full Text PDF

Dual single-atom catalysts have attracted considerable research interest due to their higher metal atom loading and more flexible active sites compared to single-atom catalysts (SACs). We pioneered the one-step synthesis of sheets copper-cobalt graphitic carbon nitride dual single-atom (S-Cu/Co-g-C3N4) using folding fan-shaped aluminum foil as a template, and used them as catalysts in the epoxidation of styrene respectively. Through XAFS(X-ray Absorption Fine Structure) and other characterizations, it is found that Cu and Co single atoms are stabilized separately on g-C3N4 via coordination with nitrogen (N), hindered the ordered growth of sheets, and formed more pore structures, which not only increased more catalytically active sites, but also effectively prevented the flakes re-aggregate during the catalytic process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!