Liquid-Liquid Phase Separation (LLPS)-Driven Fibrilization of Amyloid-β Protein.

ACS Chem Neurosci

Polymer Engineering and Colloid Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.

Published: October 2023

Amyloid-β [Aβ(1-40)] aggregation into a fibrillar network is one of the major hallmarks of Alzheimer's disease (AD). Recently, a few studies reported that polyphosphate (polyP), an anionic biopolymer that participates in various cellular physiological processes in humans, induces fibrilization in many amyloidogenic proteins [ ; John Wiley and Sons Inc., 2020; Tanzi, R. E.; Bertram, L. 2005, 120, 545-555; Selkoe, D. J. 1995, 275, 630-631; and Rambaran, R. N.; Serpell, L. C. 2008, 2, 112-117]. However, the role of polyP in Aβ(1-40) fibrilization and the underlying mechanism are unclear. In this study, we report experimental investigations on the role of polyP in the fibrilization kinetics of Aβ(1-40). It is found that polyP exhibits a dual effect depending upon the pH value. At pH = 7 (neutral), polyP inhibits amyloid fibrilization in a dose-dependent manner similar to negatively charged nanoparticles. On the contrary, at pH = 3 (acidic), polyP accelerates amyloid fibrilization kinetics via liquid-liquid phase separation (LLPS), wherein the protein-rich droplets contain mature fibrils. In the parameter space spanned by concentrations of Aβ(1-40) and polyP, a phase diagram is constructed to demark the domain where LLPS is observed at pH = 3. Characterization of the protein aggregates, secondary structure content in the aggregates, and cell viability studies in the presence of aggregates are discussed at both pH values. This study reveals that anionic biopolymers can modulate amyloid fibrilization kinetics, linked to neurodegenerative diseases, depending upon their local concentrations and pH.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.3c00286DOI Listing

Publication Analysis

Top Keywords

fibrilization kinetics
12
amyloid fibrilization
12
liquid-liquid phase
8
phase separation
8
role polyp
8
aβ1-40 polyp
8
fibrilization
7
polyp
7
separation llps-driven
4
llps-driven fibrilization
4

Similar Publications

Superoxide dismutase 1 (SOD1) aggregation is implicated in the development of Amyotrophic Lateral Sclerosis (ALS). Despite knowledge of the role of SOD1 aggregation, the mechanistic understanding remains elusive. Our investigation aimed to unravel the complex steps involved in SOD1 aggregation associated with ALS.

View Article and Find Full Text PDF

Nuclear export protein (NEP) of the influenza A virus, being one of the key components of the virus life cycle, is a promising model for studying characteristics of formation of amyloids by viral proteins. Using atomic force microscopy, comparative study of aggregation properties of the recombinant NEP variants, including the protein of natural structure, as well as modified variants with N- and C-terminal affinity His-tags, was carried out. All protein variants under physiological conditions are capable of forming aggregates of various morphologies: micelle-like nanoparticles, flexible protofibrils, rigid amyloid fibrils, etc.

View Article and Find Full Text PDF

Nano-Fibrillated Bacterial Cellulose Nanofiber Surface Modification with EDTA for the Effective Removal of Heavy Metal Ions in Aqueous Solutions.

Materials (Basel)

January 2025

Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai 059-1275, Hokkaido, Japan.

Nano-fibrillated bacterial cellulose (NFBC) has very long fibers (>17 μm) with diameters of approximately 20 nm. Hence, they have a very high aspect ratio and surface area. The high specific surface area of NFBC can potentially be utilized as an adsorbent.

View Article and Find Full Text PDF

The misfolding and amyloid aggregation of proteins have been attracting scientific interest for a few decades, due to their link with several diseases, particularly neurodegenerative diseases. Proteins can assemble and result in insoluble aggregates that, together with intermediate oligomeric species, modify the extracellular environment. Many efforts have been and are devoted to the search for cosolvents and cosolutes able to interfere with amyloid aggregation.

View Article and Find Full Text PDF

Investigating amyloid-β (Aβ) peptides in solution is essential during the initial stages of developing lead compounds that can influence Aβ fibrillation while the peptide is still in a soluble state. The tendency of the Aβ(1-42) peptide to misfold in solution, correlated to the aetiology of Alzheimer's disease (AD), is one of the main hindrances to characterising its aggregation kinetics in a cell-mimetic environment. Moreover, the Aβ(1-42) aggregation triggers the unfolded protein response (UPR) in the endoplasmic reticulum (ER), leading to cellular dysfunction and multiple cell death modalities, exacerbated by reactive oxygen species (ROS), which damage cellular components and trigger inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!