New and innovative nanomedicines have been developed and marketed over the past half-century, revolutionizing the prognosis of many human diseases. Although a univocal regulatory definition is not yet available worldwide, the term "nanomedicines" generally identifies medicinal products that use nanotechnology in their design or production. Due to the intrinsic high structural complexity of these products, the scientific and regulatory communities are reflecting on how to revise the regulatory framework to provide a more appropriate benefit/risk balance to authorize them on the market, considering the impact of their peculiar physicochemical features in the evaluation of efficacy and safety patterns. Herein, a critical perspective is provided on the current open issues regarding regulatory qualification and physicochemical characterization of nanosystems considering the current European regulatory framework on nanomedicine products. Practicable paths for improving their quality assurance and predicting their fate in vivo are also argued. Strengthening the multilevel alliance among academic institutions, industrial stakeholders, and regulatory authorities seems strategic to support innovation by standard approaches (e.g., qualification, characterization, risk assessment), and to expand current knowledge, also benefiting from the new opportunities offered by artificial intelligence and digitization in predictive modelling of the impact of nanomedicine characteristics on their fate in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468706 | PMC |
http://dx.doi.org/10.1002/adhm.202301956 | DOI Listing |
Int J Exerc Sci
December 2024
Département des sciences infirmières, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, CANADA.
Several studies have highlighted the importance of leisure-time physical activity (LTPA) for the health and performance of law enforcement officers. Nevertheless, a considerable proportion of officers still fail to engage in any LTPA. There is a clear need to identify correlates of physical activity among this specific occupational group to help the design of workplace physical activity interventions.
View Article and Find Full Text PDFBMJ Open
December 2024
Institute for Cardio-Metabolic Medicine, University Hospital Coventry & Warwickshire NHS Trust, University of Warwick Medical School and Coventry University, Coventry, UK
Objective: To estimate the resource use of patients with obstructive hypertrophic cardiomyopathy (HCM), stratified by New York Heart Association (NYHA) class, in the English and Northern Irish healthcare systems via expert elicitation.
Design: Modified Delphi framework methodology.
Setting: UK HCM secondary care centres (n=24).
BMJ Open
December 2024
Department of Pharmacology, University of Pretoria, Pretoria, South Africa.
Introduction: Snakebite envenomation has been declared a neglected tropical disease by the WHO since 2017. The disease is endemic in affected areas due to the lack of availability and access to antivenom, despite it being the standard treatment for snakebites. This challenge is perpetuated by the shortcomings of the regulatory systems and policies governing the management of antivenoms.
View Article and Find Full Text PDFMalar J
January 2025
Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia.
Background: In moderate-to-high malaria transmission regions, the World Health Organization recommends intermittent preventive treatment in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) alongside insecticide-treated bed nets to reduce the adverse consequences of pregnancy-associated malaria. Due to high-grade Plasmodium falciparum resistance to SP, novel treatment regimens need to be evaluated for IPTp, but these increase pill burden and treatment days. The present qualitative study assessed the acceptability of IPTp-SP plus dihydroartemisinin-piperaquine (DP) in Papua New Guinea, where IPTp-SP was implemented in 2009.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
Protein phosphorylation plays a crucial role in regulating a wide range of biological processes, and its dysregulation is strongly linked to various diseases. While many phosphorylation sites have been identified so far, their functionality and regulatory effects are largely unknown. Here, a deep learning model MMFuncPhos, based on a multi-modal deep learning framework, is developed to predict functional phosphorylation sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!