A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enteric fungi protect against intestinal ischemia-reperfusion injury via inhibiting the SAA1-GSDMD pathway. | LitMetric

Introduction: Prophylactic antifungal therapy has been widely used for critical patients, but it has failed to improve patient prognosis and has become a hot topic. This may be related to disruption of fungal homeostasis, but the mechanism of fungi action is not clear. As a common pathway in critical patients, intestinal ischemia-reperfusion (IIR) injury is fatal and regulated by gut microbiota. However, the exact role of enteric fungi in IIR injury remains unclear.

Objectives: This is a clinical study that aims to provide new perspectives in clarifying the underlying mechanism of IIR injury and propose potential strategies that could be relevant for the prevention and treatment of IIR injury in the near future.

Methods: ITS sequencing was performed to detect the changes in fungi before and after IIR injury. The composition of enteric fungi was altered by pretreatment with single-fungal strains, fluconazole and mannan, respectively. Intestinal morphology and function impairment were evaluated in the IIR injury mouse model. Intestinal epithelial MODE-K cells and macrophage RAW264.7 cells were cultured for in vitro tests.

Results: Fecal fungi diversity revealed the obvious alteration in IIR patients and mice, accompanied by intestinal epithelial barrier dysfunction. Fungal colonization and mannan supplementation could reverse intestinal morphology and function impairment that were exacerbated by fluconazole via inhibiting the expression of SAA1 from macrophages and decreasing pyroptosis of intestinal epithelial cells. Clodronate liposomes were used to deplete the number of macrophages, and it was demonstrated that the protective effect of mannan was dependent on macrophage involvement.

Conclusion: This finding firstly validates that enteric fungi play a crucial role in IIR injury. Preventive antifungal treatment should consider damaging fungal balance. This study provides a novel clue to clarify the role of enteric fungi in maintaining intestinal homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258666PMC
http://dx.doi.org/10.1016/j.jare.2023.09.008DOI Listing

Publication Analysis

Top Keywords

iir injury
28
enteric fungi
20
intestinal epithelial
12
intestinal
8
intestinal ischemia-reperfusion
8
injury
8
critical patients
8
iir
8
role enteric
8
fungi iir
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!