Microcrystalline cellulose (MCC-30 wt%) was extruded with a blend of polybutylene succinate (PBS) and cellulose acetate (CA-20 wt%) to produce two grades of binary (PBS/CA, PBS/MCC) and ternary (PBS/CA/MCC) specimens by injection into a mold previously thermostated at 22 °C and 78 °C. The structure-property relationships of neat PBS (n-PBS) and PBS-based blends were investigated by Fourier transform infrared (FTIR) spectroscopy, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, scanning electron microscopy (SEM), rheology, differential scanning calorimetry (DSC), thermogravimetry, and mechanical (tensile, bending) tests. FTIR/DRIFT outcomes revealed physical interactions between the ingredients through hydrogen bonds. Rheology and SEM evidenced the presence of entanglements and micro-voids absent in n-PBS. Non-isothermal DSC showed that 22 °C-molded formulations displayed crystalline degrees higher than 78 °C-specimens, except for PBS/MCC. DSC-isothermal analysis showed a hindrance effect of CA on PBS/CA crystallinity and a nucleating impact of MCC on PBS/MCC. Tensile and bending moduli increased for both material grades while the elongation at break decreased. Entanglements and micro-voids had detrimental effects on stress levels because the maximum tensile strength decreased when each or both biofillers were added to PBS. These structural configurations were beneficial for bending strengths since all blends' stiffness relatively increased regardless of material grade.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.126918DOI Listing

Publication Analysis

Top Keywords

cellulose acetate
8
microcrystalline cellulose
8
polybutylene succinate
8
fourier transform
8
tensile bending
8
entanglements micro-voids
8
increased material
8
activities cellulose
4
acetate microcrystalline
4
cellulose thermal
4

Similar Publications

The objective of this research is to develop a natural macromolecules-based smart double-layer film using carboxymethyl cellulose (CMC) film containing pomegranate peel anthocyanins (PPA) and cellulose acetate nanofibers (CANFs) with Artemisia sieberi Besser essential oil-loaded nanostructured lipid carriers (ABNLCs). Based on the performance as a color indicator, and other studied properties, the CMC/PPA 8 % film was selected as the optimized film. The double-layer film was constructed by electrospinning the CANFs containing ABNLCs on the optimized CMC film.

View Article and Find Full Text PDF

Recovery of wastewater from the pulp and paper industry by cellulose acetate reverse osmosis membrane.

Int J Biol Macromol

January 2025

Key Laboratory of Pulp and Paper Science and Technology of Shandong Province, Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China.

The high salt content and color are regarded as a major challenge to the reuse of industrial wastewater. In the present study, the application of cellulose acetate reverse osmosis (RO) membrane in combination with microfiltration (MF), ultrafiltration (UF), or nanofiltration (NF) process was investigated in the purification of biological and Fenton treated pulp and paper wastewater. In the first step, the effect of pH and inlet pressures on the membrane fouling was investigated.

View Article and Find Full Text PDF

Background: As sex pheromones are environmentally friendly and specific, they are often used to monitor and control oriental fruit moths (OFMs). Currently, non-biodegradable polymers are commonly employed as carriers to prepare controlled sex pheromone release systems for plant protection. Electrospinning is a relatively simple technique for preparing biodegradable nanofibers that allows for the controlled release of sex pheromones.

View Article and Find Full Text PDF

The effectiveness and safety of hemodialysis can be hindered by protein accumulation, mechanical instability of membranes and bacterial infection during the dialytic therapy. Herein, we show that cellulose acetate membranes modified with the low-fouling polymers (namely polyvinylpyrrolidone and polyethylene glycol), followed by the in situ reduction of different densities of silver oxide(I) nanoparticles, can effectively address these limitations. These improvements comprise the enhanced resistance to the protein fouling, improved antimicrobial capabilities against S.

View Article and Find Full Text PDF

Exploring cigarette butts pollution in Vung Tau beaches: A case study in Vietnam.

Mar Pollut Bull

January 2025

Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea. Electronic address:

Cigarette butts (CBs), alongside other plastic items, are widely recognized as a significant source of marine litter in coastal areas worldwide. This research is the first to examine CB pollution, offering valuable insights into its impact across various beaches in Vung Tau, Vietnam. A total of 512 CBs were collected, with an average density of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!