AI Article Synopsis

  • Yuanzhi Powder (YZP) is a traditional Chinese medicine that shows promise in treating Alzheimer's disease by potentially enhancing the clearance of β-amyloid (Aβ) through the brain's lymphatic system.
  • After 8 weeks of treatment in a study with APP/PS1 mice, YZP was found to significantly reduce cognitive decline and Aβ deposition, while improving overall brain health.
  • The results suggest that YZP aids in the function of cerebral lymphatic drainage, thereby facilitating the removal of Aβ from the brain to lymph nodes.

Article Abstract

Ethnopharmacological Relevance: Yuanzhi Powder (YZP) is a classical Chinese medicine prescription, which is suitable for the treatment of dementia by "dispelling phlegm and opening orifice". The therapeutic efficacy of YZP on Alzheimer's disease (AD) has been previously reported in our work. However, it remains unclear whether the neuroprotective effect of YZP is linked to β-amyloid(Aβ) clearance through cerebral lymphatic drainage.

Aim Of The Study: The aim was to determine the protective efficacy of YZP against AD and investigate the potential mechanism for eliminating excessive Aβ deposition.

Materials And Methods: APP/PS1 mice were divided into four groups of 8 mice each: APP/PS1 group, DONE group, L-YZP group, and H-YZP group. Additionally, 8 wild-type littermates were assigned to the control group (WT group). After 8 weeks of consecutive intragastric administration, behavioral tests, including the open field test, novel object recognition test and Morris Water Maze test, were employed to assess the cognitive abilities of all groups of mice. Nissl staining, immunohistochemistry, and western blotting were utilized to evaluate clearance of excessive Aβ deposition and pathological changes. Furthermore, immunofluorescence was applied to visualize the drainage of the cerebral lymphatic system after fluorescent tracer injection in the cisterna magna.

Results: The administration of YZP significantly attenuated cognitive deficits, cleared excessive Aβ deposition, and improved pathological damage in APP/PS1 mice. Furthermore, YZP effectively enhanced glymphatic system drainage by restoring AQP4 polarization and inhibiting reactive astrogliosis. Additionally, YZP facilitated the drainage of meningeal lymphatic vessels (MLVs) by augmenting their diameter and coverage. Lastly, YZP promoted the elimination of Aβ from the brain to deep cervical lymph nodes.

Conclusions: The administration of YZP may ameliorate the cognitive deficits and pathological damage in APP/PS1 mice by effectively clearing excessive Aβ deposition. The underlying mechanisms potentially involve Aβ clearance through the cerebral lymphatic system, which includes the glymphatic system and MLVs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2023.117195DOI Listing

Publication Analysis

Top Keywords

app/ps1 mice
16
excessive aβ
16
glymphatic system
12
cerebral lymphatic
12
aβ deposition
12
yzp
9
yuanzhi powder
8
aβ clearance
8
meningeal lymphatic
8
lymphatic vessels
8

Similar Publications

Alzheimer's disease (AD) is marked by impaired cognitive functions, particularly in learning and memory, owing to complex and diverse mechanisms. Methionine restriction (MR) has been found to exert a mitigating effect on brain oxidative stress to improve AD. However, the bidirectional crosstalk between the gut and brain through which MR enhances learning and memory in AD, as well as the effects of fecal microbiota transplantation (FMT) from MR mice on AD mice, remains underexplored.

View Article and Find Full Text PDF

Alzheimer's disease (AD), the most prevalent form of dementia in the elderly, involves critical changes such as reduced aerobic glycolysis in astrocytes and increased neuronal apoptosis, both of which are significant in the disease's pathology. In our study, astrocytes treated with amyloid β1-42 (Aβ) to simulate AD conditions exhibited upregulated expressions of small ubiquitin-like modifier (SUMO)-specific protease 1 (SENP1) and Pumilio RNA Binding Family Member 2 (PUM2), alongside decreased levels of Nuclear factor erythroid 2-related factor 2 (NRF2). SENP1 is notably the most upregulated SUMOylation enzyme in Aβ-exposed astrocytes.

View Article and Find Full Text PDF

Microbiome abnormalities (dysbiosis) significantly contribute to the progression of Alzheimer's disease (AD). However, the therapeutic efficacy of microbiome modulators in protecting against these ailments remains poorly studied. Herein, we tested a cocktail of unique probiotics, including 5 Lactobacillus and 5 Enterococcus strains isolated from infant gut with proven microbiome modulating capabilities.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive degenerative disease that affects a growing number of elderly individuals worldwide. OAB-14, a novel chemical compound developed by our research group, has been approved by the China Food and Drug Administration (FDA) for clinical trials in patients with AD (approval no. YD-OAB-220210).

View Article and Find Full Text PDF

Elevation of ganglioside degradation pathway drives GM2 and GM3 within amyloid plaques in a transgenic mouse model of Alzheimer's disease.

Neurobiol Dis

January 2025

Vulnerable Brain Lab, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada. Electronic address:

Alzheimer's disease (AD) is a progressive neurodegenerative disease that accounts for two-thirds of all dementia cases, and age is the strongest risk factor. In addition to the amyloid hypothesis, lipid dysregulation is now recognized as a core component of AD pathology. Gangliosides are a class of membrane lipids of the glycosphingolipid family and are enriched in the central nervous system (CNS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!