A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

New insights into the neuraminidase-mediated hemagglutination activity of influenza A(H3N2) viruses. | LitMetric

Influenza virus neuraminidase (NA) can act as a receptor-binding protein, a role commonly attributed to hemagglutinin (HA). In influenza A(H3N2) viruses, three NA amino acid residues have previously been associated with NA-mediated hemagglutination: T148, D151, and more recently, H150. These residues are part of the 150-loop of the NA monomer. Substitutions at 148 and 151 arise from virus propagation in laboratory cell cultures, whereas changes at 150 occurred during virus evolution in the human host. In this study, we examined the effect of natural amino acid polymorphism at position 150 on NA-mediated hemagglutination. Using the A/Puerto Rico/8/34 backbone, we generated a comprehensive panel of recombinant A(H3N2) viruses that have different NAs but shared an HA that displays poor binding to red blood cells (RBCs). None of the tested substitutions at 150 (C, H, L, R, and S) promoted NA-binding. However, we identified two new determinants of NA-binding, Q136K and T439R, that emerged during virus culturing. Similar to T148I, both Q136K and T439R reduced NA enzyme activity by 48-86% and inhibition (14- to 173-fold) by the NA inhibitor zanamivir. NA-binding was observed when a virus preparation contained approximately 10% of NA variants with either T148I or T439R, highlighting the benefit of using deep sequencing in virus characterization. Taken together, our findings provide new insights into the molecular mechanisms underlying the ability of NA to function as a binding protein. Information gained may aid in the design of new and improved NA-targeting antivirals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10549826PMC
http://dx.doi.org/10.1016/j.antiviral.2023.105719DOI Listing

Publication Analysis

Top Keywords

ah3n2 viruses
12
influenza ah3n2
8
amino acid
8
na-mediated hemagglutination
8
q136k t439r
8
virus
6
insights neuraminidase-mediated
4
neuraminidase-mediated hemagglutination
4
hemagglutination activity
4
activity influenza
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!