Cucurbitacin C suppresses the progression of pancreatic ductal adenocarcinoma via inhibition of the cGMP-PKG-VASP axis.

Biochem Pharmacol

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310000, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310000, China. Electronic address:

Published: November 2023

Pancreatic ductal adenocarcinoma (PDAC) remains one of the most devastating diseases; it has a considerably poor prognosis and may become the second most lethal malignancy in the next 10 years. Chemotherapeutic resistance is common in PDAC; thus, it is necessary to exploit effective alternative drugs. In recent years, traditional folk medicines and their extracts have shown great potential in cancer treatment. The seed of Lagenaria siceraria (Molina) Standl. is a traditional medicine in Asia. Because of its analgesic effects and ability to reduce swelling, it is often used as an adjuvant treatment for abdominal tumors. Cucurbitacin compounds are extracts abundant in Lagenaria siceraria (Molina) Standl. Here, we found that cucurbitacin C (CuC), a member of the cucurbitacin family, has apparent anti-PDAC therapeutic properties. CuC decreased the viability and suppressed the proliferation of PDAC cells in a time- and dose-dependent manner. Further studies revealed that CuC inhibited cell migration and invasion by inhibiting epithelial-mesenchymal transition (EMT). In addition, G2/M arrest was induced, and the apoptotic pathway was activated. Transcriptomic and bioinformatic analyses showed that CuC inhibited the cGMP-PKG-VASP axis, increasing the content of cGMP to restore tumor characteristics. The antitumor activity of CuC in vivo was verified through animal experiments, and no obvious side effects were observed. Overall, our study indicates a candidate therapeutic compound for PDAC that is worthy of further development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2023.115810DOI Listing

Publication Analysis

Top Keywords

pancreatic ductal
8
ductal adenocarcinoma
8
cgmp-pkg-vasp axis
8
lagenaria siceraria
8
siceraria molina
8
molina standl
8
cuc inhibited
8
cuc
5
cucurbitacin
4
cucurbitacin suppresses
4

Similar Publications

KRAS inhibitors: resistance drivers and combinatorial strategies.

Trends Cancer

December 2024

Charité - Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:

In 1982, the RAS genes HRAS and KRAS were discovered as the first human cancer genes, with KRAS later identified as one of the most frequently mutated oncogenes. Yet, it took nearly 40 years to develop clinically effective inhibitors for RAS-mutant cancers. The discovery in 2013 by Shokat and colleagues of a druggable pocket in KRAS paved the way to FDA approval of the first covalently binding KRAS inhibitors, sotorasib and adagrasib, in 2021 and 2022, respectively.

View Article and Find Full Text PDF

Background: Endoscopic ultrasound-guided tissue acquisition (EUS-TA) has become essential for diagnosing pancreatic ductal adenocarcinoma (PDAC) and is increasingly utilized for comprehensive genome profiling (CGP) to advance precision medicine. This systematic review and meta-analysis assess the feasibility and clinical utility of EUS-TA samples for CGP in PDAC.

Methods: We conducted a thorough systematic literature search in PubMed, EMBASE, and the Cochrane Library up to October 2023.

View Article and Find Full Text PDF

Exosome-Based Advances in Pancreatic Cancer: The Potential of Mesenchymal Stem Cells.

Crit Rev Oncol Hematol

December 2024

Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran; Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands.

Pancreatic cancer, especially pancreatic ductal adenocarcinoma (PDAC), is one of the most challenging clinical conditions due to its late-stage diagnosis and poor survival rates. Mesenchymal stem cells (MSCs), used for targeted therapies, are being explored as a promising treatment because of their tumor-homing properties and potential contributions to the pancreatic cancer microenvironment. Understanding these interactions is crucial for developing effective treatments.

View Article and Find Full Text PDF

Patient-derived organoids represent a novel platform to recapitulate the cancer cells in the patient tissue. While cancer heterogeneity has been extensively studied by a number of omics approaches, little is known about the spatiotemporal kinase activity dynamics. Here we applied a live imaging approach to organoids derived from 10 pancreatic ductal adenocarcinoma (PDAC) patients to comprehensively understand their heterogeneous growth potential and drug responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!