Anti-PD-1/PD-L1 monoclonal antibodies have displayed remarkable clinical benefits and revolutionized the treatment of multiple tumor types, but the low response rates and immune-related adverse events limit their application, which promoting the development of small molecule agents to improve the efficacy of PD-1/PD-L1 blockade therapy. Boningmycin (BON), a new small molecule belonging to bleomycin (BLM) family, exhibits potent anticancer activity in vitro and in vivo, as well as negligible lung toxicity, thereby can be an alternative of BLM. However, understandings about the anticancer mechanism of BLM-related compounds are extremely rare, it remains unclear if they affect PD-L1 level in a manner similar to that of other antitumor drugs. In this study, we discover that BON significantly reduces PD-L1 protein level in NCI-H460 and HT-1080 cells. Meanwhile, BON decreases the protein level of PD-L1 in a tumor xenograft model of NCI-H460 cells. Nevertheless, the mRNA level is not influenced after BON exposure. Furthermore, BON-induced PD-L1 reduction is proteasome- dependent. By using specific inhibitors and RNA interference technology, we confirm that the decline of PD-L1 protein by BON is mediated by AMPK-activated endoplasmic reticulum-associated degradation pathway, which is like to the action of metformin. Last but not the least, BON has synergism on gefitinib in vitro and in vivo. In conclusion, it is the first report demonstrating that BON decreases PD-L1 protein level through AMPK-mediated endoplasmic reticulum-associated degradation pathway. These findings will benefit the clinical transformation of BON and aid in the elucidation of molecular mechanism of BLM-related compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2023.110905DOI Listing

Publication Analysis

Top Keywords

pd-l1 protein
16
endoplasmic reticulum-associated
12
reticulum-associated degradation
12
protein level
12
ampk-mediated endoplasmic
8
small molecule
8
bon
8
vitro vivo
8
mechanism blm-related
8
blm-related compounds
8

Similar Publications

Glioblastoma multiforme (GBM) is characterized by pronounced immune escape and resistance to chemotherapy-induced apoptosis. Preliminary investigations revealed a marked overexpression of gasdermin E (GSDME) in GBM. Notably, cisplatin (CDDP) demonstrated a capacity of inducing pyroptosis by activating caspase-3 to cleave GSDME, coupled with the release of proinflammatory factors, indicating the potential as a viable approach of inducing anti-tumor immune activation.

View Article and Find Full Text PDF

Helicobacter pylori CagA promotes gastric cancer immune escape by upregulating SQLE.

Cell Death Dis

January 2025

Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory for Digestive Health, National Clinical Research Center of Digestive Diseases, Beijing Digestive Disease Center, Beijing, 100050, China.

Helicobacter pylori (H. pylori) infection is a well-established risk factor for gastric cancer, primarily due to its virulence factor, cytotoxin-associated gene A (CagA). Although PD-L1/PD-1-mediated immune evasion is critical in cancer development, the impact of CagA on PD-L1 regulation remains unclear.

View Article and Find Full Text PDF

PKCα regulates the secretion of PDL1-carrying small extracellular vesicles in a p53-dependent manner.

Cell Death Dis

January 2025

School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.

Small extracellular vesicles (sEVs), carrying PD-L1, have been implicated in immune evasion and tumor progression. However, understanding how PD-L1 sEVs are secreted still needs to be improved. We found that the secretion dynamics of PD-L1 sEVs is similar to that of other sEVs.

View Article and Find Full Text PDF

Itaconate transporter SLC13A3 confers immunotherapy resistance via alkylation-mediated stabilization of PD-L1.

Cell Metab

January 2025

Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710061, P.R. China. Electronic address:

Itaconate is a metabolite catalyzed by cis-aconitate decarboxylase (ACOD1), which is mainly produced by activated macrophages and secreted into the extracellular environment to exert complex bioactivity. In the tumor microenvironment, itaconate is concentrated and induces an immunosuppressive response. However, whether itaconate can be taken up by tumor cells and its mechanism of action remain largely unclear.

View Article and Find Full Text PDF

To evaluate the long-term clinical outcomes of iodine-125 low dose-rate brachytherapy (LDR-BT)-based treatment approaches for ≤ cT3 prostate cancer (PC) patients in China, as well as the effects on the PC immune microenvironment. Data was retrospectively collected from 237 patients with ≤ cT3 PC who were treated with radical prostatectomy (RP) or LDR-BT alone or in combination with androgen deprivation therapy (ADT), and biochemical progression-free survival (bPFS), prostate cancer-specific survival (PCSS) and overall survival (OS) rates were compared. In 63 cases, PC patients received RP after biopsy, received at least 6 months of ADT before RP, or received LDR-BT and deferred limited transurethral resection of the prostate (TURP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!