Persistent and mobile (PM) chemicals are considered emerging threats to the environment and drinking water because they can be transported over long distances, penetrate natural and artificial barriers, and resist removal by traditional water treatment procedures. Current chemical regulatory frameworks raise concerns over PM chemicals due to their potential to cause high human exposure through drinking water contamination. However, the criteria used to screen and identify these chemicals often rely on hazard properties related to stability and sorption, such as biodegradation half-lives and organic-carbon-normalized sorption coefficients as respective measures of P and M. Here, we conduct a model-based assessment to examine the consistency between hazard-based and exposure-based approaches in assessing PM chemicals, by evaluating whether chemicals identified as highly P and M are consistently associated with high drinking water exposure potential (DWEP). We discover that chemicals with the top DWEPs tend to be PM chemicals, but the reverse is not always true, because DWEPs are also impacted by volatilization for air-distributed chemicals and advective particle-bound transport for particle-bound chemicals. Our findings suggest that the hazard metrics are better suited for de-prioritizing, as opposed to prioritizing, chemicals that are unlikely to result in significant human exposure through drinking water, as unfavorable values of hazard metrics are a necessary but not sufficient condition for a high DWEP. We also find that distinct mechanisms determine the DWEP in different sources of drinking water: Sorption and stability are more influential on the DWEP of chemicals in groundwater and surface water, respectively, whereas both sorption and stability equally impact water undergoing riverbank filtration. Future studies should focus on optimizing the identification of persistent and mobile chemicals to ensure that exposure potential is taken into consideration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2023.120610 | DOI Listing |
Nicotine Tob Res
January 2025
University of Chicago, Department of Psychiatry and Behavioral Neuroscience, Chicago, IL.
Introduction: Prior research shows that in-person exposure to electronic nicotine delivery systems (ENDS) use increases desire for cigarettes and ENDS. However, less is known about the impact of cues delivered during remote interactions. This study extends previous in-person cue work by leveraging a remote confederate-delivered cue-delivery paradigm to evaluate the impact of dual nicotine vaping (vs.
View Article and Find Full Text PDFAnal Methods
November 2017
Materials Science Centre, Indian Institute of Technology, Kharagpur-721302, India.
Functionalized polymer membrane electrodes based multichannel sensor is used as an electronic tongue to monitor the drinking water (DW) quality simply by measuring the surface electric potential with respect to Ag/AgCl reference electrode in 1 mM aqueous KCl. Changes of minute concentration of dissolved minerals greatly affected the surface potential of the sensor. The three-channel sensor device (electronic tongue) is made by using three different functionalized polymer membrane electrodes, namely, phosphorylated hexadecyl trimethyl ammonium chloride modified polyvinyl alcohol-polyacrylic acid membrane; phosphorylated and crosslinked polyvinyl--ethylene membrane; phosphorylated and crosslinked polyvinyl alcohol membrane, as working electrodes and a Ag/AgCl reference electrode.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China. Electronic address:
The potential health hazards of micro/nanoplastics in food have become a significant concern. This study developed a Polydopamine-modified sodium alginate hydrogel (PMSAH) for removing microplastics in daily drinking water. The hydrogel's performance, characteristics, and kinetics for microplastic removal were systematically evaluated.
View Article and Find Full Text PDFEnviron Res
January 2025
ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal - 462030, Madhya Pradesh, India. Electronic address:
A wide range of pollutants, including heavy metals, endocrine-disrupting chemicals (EDCs), residual pesticides, and pharmaceuticals, are present in various water systems, many of which strongly drive the proliferation and dissemination of antimicrobial resistance genes (ARGs), heightening the antimicrobial resistance (AMR) crisis and creating a critical challenge for environmental and health management worldwide. This study addresses the impact of anthropogenic pollutants on AMR through an extensive analysis of ARGs and mobile genetic elements (MGEs) in urban wastewater, source water, and drinking water supplies in India. Results indicated that bla and bla were the dominant ARGs across all water systems, underscoring the prevalence and dominance of resistance against β-lactam antibiotics.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt. Electronic address:
The purpose of this study was to investigate the effects of thyme oil (TO), chitosan nanoparticles (CS-NPs), and TO-loaded-CS-NPs on controlling Salmonella Typhimurium (S. Typhimurium) infection in broiler chickens when compared to ciprofloxacin (Cip) antibiotic treatment. The CS-NPs and TO-loaded-CS-NPs were initially characterized using a transmission electron microscope.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!