Lipid nanoparticles (LNPs) are clinically validated drug-delivery carriers. However, clinical data on intravenously administered LNPs are limited compared with those on intramuscularly administered LNPs (mRNA vaccines against COVID-19). Here, we reviewed three clinically tested intravenously administered LNPs (patisiran, mRNA-1944, and NTLA-2001). We summarize the differences and similarities in their formulations, mechanisms of action, and pharmacokinetics profiles. In humans, patisiran and mRNA-1944 exhibited similar multiphasic pharmacokinetic profiles with a secondary peak in the RNA concentration. siRNA (patisiran) and mRNA (mRNA-1944) exhibited prolonged blood circulation and were detectable for more than 28 days after a single administration. We further summarize the basics of extracellular vesicles (EVs) and discuss the potential linkages between LNPs and EVs. This Review provides an understanding of the human clinical data of intravenous LNP formulations, which can be potentially explored to develop next-generation LNP-and EV-based drug delivery carriers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.3c00547DOI Listing

Publication Analysis

Top Keywords

intravenously administered
12
lipid nanoparticles
12
administered lnps
12
differences similarities
8
extracellular vesicles
8
clinical data
8
patisiran mrna-1944
8
mrna-1944 exhibited
8
lnps
5
similarities intravenously
4

Similar Publications

Study Objective: To cover pediatric emergency physicians' off-hours, third-year pediatric residents in Israel are trained for unsupervised administration of emergency department (ED) dissociative and deep sedation. We assessed the frequency of critical sedation events associated with resident-performed sedations.

Methods: We conducted a retrospective chart review on all patients receiving intravenous sedation across 10 pediatric EDs between January 2018 and September 2022.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) is associated with cardiometabolic risk. Although studies have shown that estradiol positively contributes to energy metabolism via estrogen receptor alpha (ERα), its role specifically in the liver is not defined. Therefore, this study aimed to evaluate the effects of ERα overexpression, specifically in the liver in mice fed a high-fat diet (HFD).

View Article and Find Full Text PDF

Background: The prediction of human clearance (CL) and subcutaneous (SC) bioavailability is a critical aspect of monoclonal antibody (mAb) selection for clinical development. While monkeys are a well-accepted model for predicting human CL, other preclinical species have been less-thoroughly explored. Unlike CL, predicting the bioavailability of SC administered mAbs in humans remains challenging as contributing factors are not well understood, and preclinical models have not been systematically evaluated.

View Article and Find Full Text PDF

Elevated CXCL1 triggers dopaminergic neuronal loss in the substantia nigra of C57BL/6J mice: Evaluation of a novel Parkinsonian mouse model.

Zool Res

January 2025

Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong 266071, China. E-mail:

Substantial evidence points to the early onset of peripheral inflammation in the development of Parkinson's disease (PD), supporting the "body-first" hypothesis. However, there remains a notable absence of PD-specific animal models induced by inflammatory cytokines. This study introduces a novel mouse model of PD driven by the proinflammatory cytokine CXCL1, identified in our previous research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!