Background: The oriental migratory locust is a major crop pest across eastern and south-eastern Asia. Metarhizium anisopliae is an effective biopesticide agent used for locust control, but its performance is temperature dependent, and thus can be more variable than chemical pesticide performance. To predict biopesticide performance for the control of the oriental migratory locust, we adapted a previous temperature-dependent model and validated it using field trial data. To increase the applicability of this model, we explored the use of readily available temperature variables, as well as our own satellite-derived canopy temperature variable, to run the model.
Results: Compared to collected in situ temperature data, our canopy temperature variable most accurately represented the ambient temperature experienced by the locust. When the biopesticide performance model was run using this canopy temperature and compared to field trials results, the model predictions were more accurate than when the model was run with the other temperature variables. The accuracy of the biopesticide performance model was impacted by vegetation cover, but across the areas most associated with locust oviposition, growth and migration, the model predictions were satisfactorily accurate to guide biopesticide operational use.
Conclusion: We validated the model in six provinces in China, representing the three agro-ecological zones largely representative of the oriental migratory locust problem areas in China, Thailand, Cambodia and Vietnam. Whilst further validation work is needed, this model could be used in these countries to assess, at a fine spatial scale, the appropriateness of M. anisopliae for controlling the oriental migratory locust. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ps.7775 | DOI Listing |
Insects
December 2024
The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
The beet armyworm (Hübner), a global pest, feeds on and affects a wide range of crops. Its long-distance migration with the East Asian monsoon frequently causes large-scale outbreaks in East and Southeast Asia. This pest mainly breeds in tropical regions in the winter season every year; however, few studies have investigated associations with its population movements in this region.
View Article and Find Full Text PDFBiology (Basel)
December 2024
College of Plant Protection, Yangzhou University, Yangzhou 225091, China.
(Walker), a significant migratory pest in many Asian countries, can cause severe damage to wheat crops. Understanding whether wild oat can serve as an alternate host is important for informing predictive models of infestation levels in wheat fields and can improve pest and weed management strategies. We first conducted both choice and no-choice experiments and found that readily laid eggs on both wheat and wild oat, with no significant oviposition preference.
View Article and Find Full Text PDFGigascience
January 2024
College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
Background: The oriental stork, Ciconia boyciana, is an endangered migratory bird listed on the International Union for Conservation of Nature's Red List. The bird population has experienced a rapid decline in the past decades, with nest locations and stop-over sites largely degraded due to human-bird conflicts. Multipronged conservation efforts are required to secure the future of oriental storks.
View Article and Find Full Text PDFProc Biol Sci
January 2024
Department of Earth System Science, Ministry of Education Field Research Station for East Asian Migratory Birds, Tsinghua University, Beijing 100086, People's Republic of China.
East Asian herbivorous waterfowl intensively use farmland in spring, next to their natural habitat. Accordingly, they might have expanded their migration strategy from merely tracking the green wave of newly emerging vegetation to also incorporating the availability of post-harvest agricultural seeds (here dubbed the seed wave). However, if and how waterfowl use multiple food resources to time their seasonal migration is still unknown.
View Article and Find Full Text PDFActa Trop
October 2024
Jilin Provincial Academy of Forestry Sciences, Changchun, 130117, China. Electronic address:
Migratory birds play an important role in the cross-regional transmission of zoonotic pathogens. Assessing the presence of zoonotic pathogens carried by migratory birds is critical for disease control. However, information about Blastocystis infection in the migratory birds is very limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!