Severe asthma is a chronic inflammatory airway disease with great therapeutic challenges. Understanding the genetic and molecular mechanisms of severe asthma may help identify therapeutic strategies for this complex condition. RNA expression data were analyzed using a combination of artificial intelligence methods to identify novel genes related to severe asthma. Through the ANOVA feature selection approach, 100 candidate genes were selected among 54,715 mRNAs in blood samples of patients with severe asthmatic and healthy groups. A deep learning model was used to validate the significance of the candidate genes. The accuracy, F1-score, AUC-ROC, and precision of the 100 genes were 83%, 0.86, 0.89, and 0.9, respectively. To discover hidden associations among selected genes, association rule mining was applied. The top 20 genes including the PTBP1, RAB11FIP3, APH1A, and MYD88 were recognized as the most frequent items among severe asthma association rules. The PTBP1 was found to be the most frequent gene associated with severe asthma among those 20 genes. PTBP1 was the gene most frequently associated with severe asthma among candidate genes. Identification of master genes involved in the initiation and development of asthma can offer novel targets for its diagnosis, prognosis, and targeted-signaling therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505163 | PMC |
http://dx.doi.org/10.1038/s41598-023-42581-5 | DOI Listing |
Medicina (Kaunas)
December 2024
Department of Health Science, Anesthesia and ICU, School of Medicine, University of Basilicata San Carlo Hospital, 85100 Potenza, Italy.
Extracorporeal cardiopulmonary resuscitation (ECPR) is a complex, life-saving procedure that uses mechanical support for patients with refractory cardiac arrest, representing the pinnacle of extracorporeal membrane oxygenation (ECMO) applications. Effective ECPR requires precise patient selection, rapid mobilization of a multidisciplinary team, and skilled cannulation techniques. Establishing a program necessitates a cohesive ECMO system that promotes interdisciplinary collaboration, which is essential for managing acute cardiogenic shock and severe pulmonary failure.
View Article and Find Full Text PDFChildren (Basel)
November 2024
Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy.
Background: Human milk (HM) is recognized as an ideal source of nutrition for newborns; as a result, its multiple bioactive molecules can support the growth of healthy newborns and reduce the risk of mortality and diseases such as asthma, respiratory infections, diabetes (type 1 and 2), and gastrointestinal disorders such as ulcerative colitis and Crohn's disease. Furthermore, it can reduce the severity of necrotizing enterocolitis (NEC) in preterm infants. Moreover, human milk oligosaccharides (HMOs) present in breast milk show an immunomodulatory, prebiotic, and neurodevelopmental effect that supports the microbiota-gut-brain axis.
View Article and Find Full Text PDFBiomedicines
November 2024
Faculty of Medicine, University of Warsaw, 02-089 Warsaw, Poland.
Purpose Of Review: Regulatory B cells (Bregs) are a key component in the regulation of the immune system. Their immunosuppressive function, which includes limiting the inflammatory cascade, occurs through interactions with other immune cells and the secretion of cytokines, primarily IL-10. As knowledge about B cells continues to expand, their diversity is becoming more recognized, with many subpopulations identified in both human and animal models.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore 54590, Pakistan.
Background: Genetic factors play a role in asthma severity. However, low- and middle-income countries have minimal contribution to genomic asthma research. The current study investigates the influence of an important genetic asthma region (6p21) on severe asthma in a cohort of asthmatics in Pakistan.
View Article and Find Full Text PDFBiomolecules
December 2024
Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania.
Eosinophils are central inflammatory cells in asthma; however, a portion of patients with chronic obstructive pulmonary disease (COPD) have blood or sputum eosinophilia, a condition termed eosinophilic COPD (eCOPD), which may contribute to the progression of the disease. We hypothesize that eosinophilic inflammation in eCOPD patients is related to Type 2 (T2)-high inflammation seen in asthma and that serum mediators might help us to identify T2-high inflammation in patients and choose an appropriate personalized treatment strategy. Thus, we aimed to investigate ten serum levels of T2-high inflammation mediators in eCOPD patients and compare them to severe non-allergic eosinophilic asthma (SNEA) patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!