Arthroscopic Repair and Reconstruction of Coracoclavicular Ligament.

Clin Sports Med

Department of Orthopedic Surgery, University of Colorado School of Medicine, Aurora, CO, USA. Electronic address:

Published: October 2023

Acromioclavicular joint separations are common shoulder injuries that require prompt recognition, diagnosis, and treatment. Deciding on a treatment algorithm relies on a detailed knowledge of anatomy and a thorough understanding of the specific functional demands of the patient in question. When a repair or reconstruction is indicated, arthroscopic assistance can be a helpful tool to ensure a safe, anatomic reconstruction that minimizes morbidity and maximizes the potential return to high-level function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.csm.2023.05.004DOI Listing

Publication Analysis

Top Keywords

repair reconstruction
8
arthroscopic repair
4
reconstruction coracoclavicular
4
coracoclavicular ligament
4
ligament acromioclavicular
4
acromioclavicular joint
4
joint separations
4
separations common
4
common shoulder
4
shoulder injuries
4

Similar Publications

Microenvironment Remodeling Microgel Repairs Degenerated Intervertebral Disc via Programmed Delivery of MicroRNA-155.

ACS Appl Mater Interfaces

January 2025

Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

The progression of intervertebral disc degeneration (IVDD) is associated with increased cell apoptosis and reduced extracellular matrix (ECM) production, both of which are driven by ongoing inflammation. Thus, alleviating the acidic inflammatory microenvironment and mitigating the apoptosis of nucleus pulposus cells (NPCs) are essential for intervertebral disc (IVD) regeneration. Regulating pH levels in the local environment can reduce inflammation and promote tissue recovery.

View Article and Find Full Text PDF

This study aims to identify factors influencing aesthetic outcomes following facial basal cell carcinoma (BCC) plastic surgery to enhance post-operative satisfaction and cosmetic results. A retrospective cohort study was conducted on 303 patients who underwent facial BCC plastic surgery between June 2021 and June 2023. Data on demographics, blood tests, SF-12, and Skindex-16 scores were analyzed.

View Article and Find Full Text PDF

Electrospinning based biomaterials for biomimetic fabrication, bioactive protein delivery and wound regenerative repair.

Regen Biomater

December 2024

Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany.

Electrospinning is a remarkably straightforward and adaptable technique that can be employed to process an array of synthetic and natural materials, resulting in the production of nanoscale fibers. It has emerged as a novel technique for biomedical applications and has gained increasing popularity in the research community in recent times. In the context of tissue repair and tissue engineering, there is a growing tendency toward the integration of biomimetic scaffolds and bioactive macromolecules, particularly proteins and growth factors.

View Article and Find Full Text PDF

The field of periodontal regeneration focuses on restoring the form and function of periodontal tissues compromised due to diseases affecting the supporting structures of teeth. Biomaterials have emerged as a vital component in periodontal regenerative therapy, offering a variety of properties that enhance cellular interactions, promote healing, and support tissue reconstruction. This review explores current advances in biomaterials for periodontal regeneration, including ceramics, polymers, and composite scaffolds, and their integration with biological agents like growth factors and stem cells.

View Article and Find Full Text PDF

Background: Vascularized bone grafts (VBGs) are currently the main surgical option for the restoration of humeral bone defects particularly when defects are larger than 6 cm. Because it offers a strong, rapid blood supply, VBGs easily integrate into the recipient sites and undergo active resorption and remodeling into healthy bone through primary bone healing. Additionally, they support the recipient site's immune system in preventing and reducing infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!