Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The treatment of dye wastewater poses a significant challenge to the sewage recycling industries. However, the reduction of secondary pollution resulting from the membrane residues, to maintain high performance, remains a considerable obstacle. A novel approach for the fabrication of multilayer nanofiber structures using a layer-by-layer electrostatic spinning technique with biological materials was reported in this study. Incorporating the chemical adsorption advantages of lignin nanofiber and the physical adsorption advantages of silk fibroin (SF) nanofiber enabled the full realization of excellent dye interception performance. A comparative analysis was conducted on the lignin derived from eucalyptus, pine, and straw to determine the most suitable option. Notably, eucalyptus lignin exhibited superior antimicrobial properties. The adsorption of crystal violet by eucalyptus lignin/SF membrane was consistent with the Freundlich isotherm model and the pseudo-second-order kinetic model, revealing a chemisorption mechanism involving Π-Π conjugation, hydrogen bonding, and the binding of anions and cations. The lignin/SF membrane exhibited a retention rate exceeding 99.5 % for crystal violet, methylene blue, and brilliant green dyes. Furthermore, it demonstrated efficacy in retaining heavy metal ions, including cadmium and copper. The original biomass material imparts the property of rapid degradation to a multilayer membrane that can be used as an effective and eco-friendly water purification material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.126863 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!