Poloxamer 188 is a widely used pharmaceutical excipient, which can be found in a variety of drug formulations. In this study, a novel self-assembled nanoplatform was developed for active targeting of folate receptor-overexpressing triple-negative breast cancer. This platform, FPP NPs, was prepared by the retrofitted poloxamer 188 derivatives, resulting in nanoparticles with an appropriate size (< 100 nm), good stability, and satisfactory biocompatibility. Cellular uptake and in vivo distribution studies showed that the FPP NPs had strong tumor cell uptake and active targeting capabilities. Furthermore, docetaxel (DTX) was loaded into FPP NPs in this research. The resulting DTX/FPP NPs exhibited high drug encapsulation efficiency and drug loading capacity, and could rapidly release DTX under slightly acidic conditions, significantly increasing the antitumor activity of the encapsulated drug both in vitro and in vivo. In addition, DTX/FPP NPs could significantly decrease the hepatotoxicity and nephrotoxicity of DTX. Therefore, this drug delivery nanoplatform, based on retrofitted poloxamer 188 with self-assembly properties in aqueous solution and active targeting capabilities to tumors, may provide a promising approach for targeted treatment of triple-negative breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2023.110710DOI Listing

Publication Analysis

Top Keywords

poloxamer 188
16
triple-negative breast
12
breast cancer
12
active targeting
12
fpp nps
12
novel self-assembled
8
self-assembled nanoplatform
8
nanoplatform based
8
retrofitted poloxamer
8
targeting capabilities
8

Similar Publications

Lidocaine (LID), frequently used in dermal applications, is a nonpolar local anesthetic agent that is practically insoluble in water. The main aim of this study is to develop the nanosuspension formulation of LID using the design of experiments (DoE). The improved solubility and dissolution rate provided by nanosizing are expected to result in enhanced dermal bioavailability.

View Article and Find Full Text PDF

Polymer-based herbicide nanocarriers have shown potential for increasing the herbicide efficacy and environmental safety. This study aimed to develop, characterize, and evaluate toxicity to target and nontarget organisms of natural-based polymeric nanosystems for glyphosate. Polymers such as chitosan (CS), zein (ZN), and lignin (LG) were used in the synthesis.

View Article and Find Full Text PDF

Aminoglycoside/Hexadecanoic Acid Complex Lamellar Core Nanoparticles.

ACS Omega

December 2024

Department of Clinical Medicine, Macquarie University, Sydney, NSW 2109, Australia.

An aminoglycoside, tobramycin sulfate (TbS), was complexed with hexadecanoic acid (HdA), resulting in a TbS/HdA complex with a repeat unit of 5.3 nm of a lamellar nanostructure. The nanometer-sized TbS/HdA particles were produced using poloxamer 188 as a dispersing agent.

View Article and Find Full Text PDF

Purpose: This study aimed to develop a solid self-nanoemulsifying drug delivery system (SNEDDS) and surface-coated microspheres to improve the oral bioavailability of niclosamide.

Methods: A solubility screening study showed that liquid SNEDDS, prepared using an optimized volume ratio of corn oil, Cremophor RH40, and Tween 80 (20:24:56), formed nanoemulsions with the smallest droplet size. Niclosamide was incorporated into this liquid SNEDDS and spray-dried with calcium silicate to produce solid SNEDDS.

View Article and Find Full Text PDF

Potential Unlocking of Biological Activity of Caffeic Acid by Incorporation into Hydrophilic Gels.

Gels

December 2024

Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania.

Caffeic acid, a phenolic compound with antioxidant and antimicrobial properties, shows promise in the dermatological field. The research aimed to incorporate caffeic acid into hydrophilic gels based on poloxamer 407, carbomer 980, and their mixture in order to enhance its biological activity. Different gel formulations were prepared using different concentrations of these polymers to optimize caffeic acid release characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!