Electrochemical conversion of CO into chemical feedstock, such as an energy-dense liquid product (formate), is desirable to address the excessive emission of greenhouse gases and store energy. Cu-based catalysts exhibit great advantages in electrochemical CO reduction reaction (eCORR) due to their low cost and high abundance, but suffer from low selectivity of formate. In this work, a facile one-pot approach is developed to synthesize CuBr nanoparticle (CuBr NP) that can conduct in situ dynamic restructuring during eCORR to generate Br-doped Cu NP. The in situ-formed Br-doped Cu NP can afford up to 91.6% Faradaic efficiency (FE) for formate production with a partial current density of 15.1 mA·cm at -0.94 V vs. reversible hydrogen electrode (RHE) in an H-type cell. Moreover, Br-doped Cu NP can deliver excellent long-term stability for up to 25 h. The first-principles density functional theory (DFT) calculations show that the doped Br can regulate the electronic structure of Cu active sites to optimize the adsorption of the HCOO* intermediate, greatly hindering the formation of CO and H. This work provides a strategy for electronic modulation of metal active site and suggests new opportunities in high selectivity for electrocatalytic reduction of CO to formate over Cu-based catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.09.072 | DOI Listing |
Langmuir
January 2025
CHRIST University, Bangalore, Karnataka 560029, India.
Given the inherent challenges of the CO electroreduction (COER) reaction, solely from CO and HO, it is desirable to develop selective product formation pathways. This can be achieved by designing multimetallic nanocomposites that provide optimal CO coverage, allowing for tunability in the product formation. In this work, Ag and Zn codoped-SrTiO (ZAST) composite immobilized carbon black (CB)-modified GCE working electrode (ZAST@CB/GCE) was developed for the electrochemical conversion of CO to multicarbon products.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Solar-powered electrochemical NH synthesis offers the benefits of sustainability and absence of CO emissions but suffers from a poor solar-to-ammonia yield rate (SAY) due to a low NH selectivity, large bias caused by the sluggish oxygen evolution reaction, and low photocurrent in the corresponding photovoltaics. Herein, a highly efficient photovoltaic-electrocatalytic system enabling high-rate solar-driven NH synthesis was developed. A high-performance Ru-doped Co nanotube catalyst was used to selectively promote the nitrite reduction reaction (NORR), exhibiting a faradaic efficiency of 99.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Metallurgy, Northeastern University, Shenyang 110819, China.
Sensitive H sensors play key roles in the large-scale and safe applications of H. In this study, we developed novel ternary Pd-loaded SnO@WO core-shell structures by hydrothermal and reduction methods. The compositions of the optimized ternary core-shell structures (Pd-SW-2) are prepared on the basis of the optimal binary core-shell structures (SW-X) according to the sensing performances to H.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.
A significant challenge in commercializing electrochemical CO reduction (COR) is achieving catalyst durability. In this study, online inductively coupled mass spectrometry (ICP-MS) was used to investigate catalyst degradation via nanoparticle detachment and/or dissolution into metal ions under COR operating conditions in 0.1 M KHCO.
View Article and Find Full Text PDFDalton Trans
January 2025
Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China.
The electrochemical nitrate reduction reaction (NORR) is considered as a promising strategy for addressing environmental pollution and sustainable energy development. In this study, prism-like CuO loaded on copper foam (CuO/CF) was synthesized in a simple solvothermal reaction and an electrochemical reconstruction process. The electrochemical reconstruction process facilitates the formation of a CuO lattice structure on copper foam derived from FU-CF generated by the reaction of copper foam and fumaric acid (HFU) in DMF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!