Modeling wastewater processes supports tasks such as process prediction, soft sensing, data analysis and computer assisted design of wastewater systems. Wastewater treatment processes are large, complex processes, with multiple controlling mechanisms, a high degree of disturbance variability and non-linear (generally stable) behavior with multiple internal recycle loops. Semi-mechanistic biochemical models currently dominate research and application, with data-driven deep learning models emerging as an alternative and supplementary approach. But these modeling approaches have grown in separate communities of research and practice, and so there is limited appreciation of the strengths, weaknesses, contrasts and similarities between the methods. This review addresses that gap by providing a detailed guide to deep learning methods and their application to wastewater process modeling. The review is aimed at wastewater modeling experts who are familiar with established mechanistic modeling approach, and are curious about the opportunities and challenges afforded by deep learning methods. We conclude with a discussion and needs analysis on the value of different ways of modeling wastewater processes and open research problems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.120518DOI Listing

Publication Analysis

Top Keywords

deep learning
16
wastewater treatment
8
modeling wastewater
8
wastewater processes
8
learning methods
8
wastewater
7
modeling
6
deep
4
learning wastewater
4
treatment critical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!