Halogenated α, β-unsaturated C-dicarbonyl (X-BDA), a novel family of high-toxicity ring cleavage products, is produced during the disinfection of phenolic compounds. The technique of electrocatalytic hydrodehalogenation (ECH) is efficient in rupturing carbon-halogen bonds and generating useful chemicals. This study used first principles to examine the ECH reaction mechanism of X-BDA and the subsequent hydrogenation reaction of the toxic derivative BDA over the 1 T'-MoS/TiCT (T = O, OH, F) catalysts. The catalytic activity of TiCT (T = O, OH, F) catalysts decreases gradually with -OH, -F, -O functional group. The loading of 1 T'-MoS onto the TiCT surface improves the stability and selectivity of TiCT. In particular, 1 T'-MoS/TiC(OH) is most conducive to the ECH reaction of X-BDA via a direct-indirect continuous reduction process. It exhibits excellent removal capability towards Cl-BDA, with decreasing reactivity in the order of the Cl-, Br-, and I-BDA. The material offers a solution to the challenging dechlorination issue. The dehalogenated product BDA can be hydrogenated to produce 1,4-butanedial, 1,4-butanediol, and 1,4-butenediol. Three valuable chemicals can be obtained by exerting an applied potential of - 0.65 V. This work suggests that the formation of heterojunction catalyst may lead to new strategies to improve ECH for environmental remediation applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.132531 | DOI Listing |
Inorg Chem
January 2025
Departamento de Química Física and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza 50009, Spain.
The pentafluoroorthotellurate group (-OTeF, teflate) exhibits high electron-withdrawing properties. Indeed, it is often used as a bulky substitute for fluoride due to its high chemical stability and larger size, which reduces its tendency to act as a bridging ligand. These characteristics make it a valuable ligand in synthetic chemistry, facilitating the preparation of molecular structures analogous to polymeric fluoride-based compounds.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China.
Organic-inorganic hybrid lead halides have been extensively studied due to their outstanding physical properties and diverse compositional elements. However, environmentally benign tin-based hybrids with remarkable flexibility in bandgap engineering have been less investigated. Herein, we report the successful design and synthesis of three tin-based organic-inorganic hybrid compounds through precise molecular modification: [Me(i-Pr)N][SnBr] (), [MeCHCl(i-Pr)N][SnBr] (), and [MeCHBr(i-Pr-Br)N][SnBr] ().
View Article and Find Full Text PDFInorg Chem
January 2025
Institute of Inorganic Chemistry, Czech Academy of Sciences, CZ, 250 68 Husinec-Řež, Czech Republic.
A series of -tricarbollides based on 10,11-X-7-MeN--7,8,9-CBH (X = H, Cl, Br, I) and their protonated, i.e. cationic, counterparts, which have an extra H-bridge over the B10-B11 vector in the open pentagonal belt, were prepared.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore.
Employing electrochemistry for the selective functionalization of liquid alkanes allows for sustainable and efficient production of high-value chemicals. However, the large potentials required for C(sp)-H bond functionalization and low water solubility of such alkanes make it challenging. Here we discover that a Pt/IrO electrocatalyst with optimized Cl binding energy enables selective generation of Cl free radicals for C-H chlorination of alkanes.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, China. Electronic address:
The signal intensity ratio (SIR) is a crucial factor in advancing probe technology due to its direct impact on sensitivity and precision, particularly in applications such as medical imaging, environmental monitoring, and food safety testing. However, the development of high-SIR probes is challenged by complexities in fabrication, cost, and mechanical stability. In this study, we address these limitations by investigating the role of halogen atom substitutions in modulating the intermolecular binding energy and aggregation behavior of Ce-Salen Schiff base complexes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!