User-friendly one-step disposable signal-on bioassay for glyphosate detection in water samples.

Biosens Bioelectron

Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR, 5246, 69622, Villeurbanne, France. Electronic address:

Published: December 2023

The onsite detection of glyphosate requires an easy-to-handle, low-cost and disposable assay for untrained users as requested by the ASSURED guidelines. A new strategy based on the expression of fusion proteins is proposed here. A glyphosate oxidase derived from Bacillus subtilis and the 6E10 variant of the dye peroxidase from Pseudomonas putida, both fused with the carbohydrate binding module (CBM) 3a from Clostridium thermocellum, were designed and expressed, leading to GlyphOx-CBM and 6E10-CBM. Cell lysates were used to immobilise both enzymes on cotton buds' heads without any purification. The cotton buds exhibit glyphosate oxidase activity when dipped into a glyphosate-contaminated water sample containing the 6E10-CBM chromogenic substrates. The chromophore could be quantified both in the solution and on the cotton buds' heads. Photography followed by image analysis allows to detect glyphosate with a linear range of 0.25-2.5 mM and a limit of detection (LoD) of 0.12 mM. When the chromogenic substrates are replaced by luminol, the chemiluminescence reaction allows the detection of glyphosate with a linear range of 2-500 μM and a LoD of 0.45 μM. No interference was observed using glyphosate analogues (glycine, sarcosine, aminomethylphosphonic acid) or other herbicides used in a mixture. Only cysteine was found to inhibit 6E10-CBM. Two river waters spiked with glyphosate lead to recoveries of 64-131%. This work describes a very easy-to-handle and inexpensive signal-on bioassay for glyphosate detection in real surface water samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2023.115689DOI Listing

Publication Analysis

Top Keywords

glyphosate
9
signal-on bioassay
8
bioassay glyphosate
8
glyphosate detection
8
water samples
8
detection glyphosate
8
glyphosate oxidase
8
cotton buds'
8
buds' heads
8
chromogenic substrates
8

Similar Publications

Draft genome sequence of glyphosate-degrading sp. strain GPK 3 (VKM B-2554D) isolated from agricultural soil.

Microbiol Resour Announc

January 2025

G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia.

The genome of sp. isolated from agricultural soil polluted with the herbicide glyphosate is reported. The genome size is 5.

View Article and Find Full Text PDF

immunotoxic evaluation of herbicides in RAW 264.7 cells.

J Toxicol Environ Health A

January 2025

Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.

Weeds are a concern in agriculture and the use of herbicides constitutes an effective, efficient, and economical way to control their growth. Recent discoveries of herbicides are promising for the management of resistant weeds. However, there is a gap in the knowledge of the toxic effects of some herbicides previously reported on immune cells.

View Article and Find Full Text PDF

Glyphosate exposure and GM seed rollout unequally reduced perinatal health.

Proc Natl Acad Sci U S A

January 2025

Department of Economics, University of Oregon, Eugene, OR 97403.

The advent of herbicide-tolerant genetically modified (GM) crops spurred rapid and widespread use of the herbicide glyphosate throughout US agriculture. In the two decades following GM-seeds' introduction, the volume of glyphosate applied in the United States increased by more than 750%. Despite this breadth and scale, science and policy remain unresolved regarding the effects of glyphosate on human health.

View Article and Find Full Text PDF

Glyphosate-Based Herbicide Stress During Pregnancy Impairs Intestinal Development in Newborn Piglets by Modifying DNA Methylation.

J Agric Food Chem

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.

Glyphosate-based herbicide (GBH), a feed contaminant, has been proven to impair the growth and development of humans and animals. Previous research has revealed that maternal toxin exposure during pregnancy could cause permanent fetal changes by epigenetic modulation. However, there was insufficient evidence of the involvement of DNA methylation in maternal GBH exposure-induced intestinal health of offspring.

View Article and Find Full Text PDF

Immobilization of 4-MBA & Cu on Au nanoparticles modified screen-printed electrode for glyphosate detection.

Talanta

January 2025

College of Agricultural Engineering, Shanxi Agricultural University, Taigu, 030801, China; Dryland Farm Machinery Key Technology and Equipment Key Laboratory of Shanxi Province, Taigu, 030801, China.

This study introduces an innovative electrochemical biosensor, engineered through the functionalization screen-printed electrode (SPE) with a coordination complex comprised of 4-mercaptobenzoic acid (4-MBA) and copper ions (Cu), achieving precise quantitative determination of glyphosate. Electrodepositing gold nanoparticles (AuNPs) onto the electrode surface, forming a self-assembled monolayer (SAM) of 4-MBA via thiol-gold interactions, and immobilizing Cu via coordination bonding with the monolayer, finalizing the electrochemical biosensor construction as Cu/4-MBA/AuNPs/SPE. The successful modification of the biosensor interface is confirmed through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and electrochemical characterization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!