There is growing interest in the use of natural bioactive compounds for the development of new bio-based materials for intelligent and active food packaging applications. Several beneficial effects have been associated with the antioxidant and antimicrobial potentials of carotenoid compounds. In addition, carotenoids are sensitive to pH changes and oxidation reactions, which make them useful bioindicators of food deterioration. This review summarizes the current research on the application of carotenoids as novel intelligent and active biodegradable food packaging materials. Carotenoids recovered from food processing by-products can be used in the development of active food packaging materials due to their antioxidant properties. They help maintain the stability of lipid-rich foods, such as vegetable oils. Additionally, when incorporated into films, carotenoids can monitor food oxidation, providing intelligent functionalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2023.137454 | DOI Listing |
ACS Nano
January 2025
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy-heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment.
View Article and Find Full Text PDFAppl Psychol Health Well Being
February 2025
College of Business, James Madison University, Harrisonburg, Virginia, USA.
As organizations are increasingly turning to voluntary wellness programs to improve employee well-being, the majority of studies in literature have focused on corporate-level benefits of wellness programs, such as productivity. However, there is a scarcity of studies that examine the intrinsic motivators that influence employee participation in such programs. In this study, we use a unique secondary dataset from a voluntary corporate wellness program and propose a novel theoretical framework based on motivational and behavioral theories to examine and understand the participants' behavior.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London SE1 9RT, UK.
Extracorporeal carbon dioxide removal (ECCOR) is an emerging technique designed to reduce carbon dioxide (CO) levels in venous blood while enabling lung-protective ventilation or alleviating the work of breathing. Unlike high-flow extracorporeal membrane oxygenation (ECMO), ECCOR operates at lower blood flows (0.4-1.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai 519031, China.
Electroencephalogram (EEG) signals are important bioelectrical signals widely used in brain activity studies, cognitive mechanism research, and the diagnosis and treatment of neurological disorders. However, EEG signals are often influenced by various physiological artifacts, which can significantly affect data analysis and diagnosis. Recently, deep learning-based EEG denoising methods have exhibited unique advantages over traditional methods.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.
This research presents an intelligent beam-hopping-based grant-free random access (GFRA) architecture designed for secure Internet of Things (IoT) communications in Low Earth Orbit (LEO) satellite networks. In light of the difficulties associated with facilitating extensive device connectivity while ensuring low latency and high reliability, we present a beam-hopping GFRA (BH-GFRA) scheme that enhances access efficiency and reduces resource collisions. Three distinct resource-hopping schemes, random hopping, group hopping, and orthogonal group hopping, are examined and utilized within the framework.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!