AI Article Synopsis

  • - The study focuses on improving the accuracy of deep learning algorithms for measuring thoracic aortic dilatation (TAD) in chest CT scans, particularly for non-ECG gated exams, due to previous unreliable classifications, especially at the aortic root.
  • - A total of 995 patients were included, and the re-trained deep learning tool showed a significant increase in correct diameter measurements, achieving 95.5% accuracy overall, compared to the initial version.
  • - The re-trained algorithm not only improved measurements at previously problematic locations (like the aortic root) but also identified additional measurements not captured before, though it still had a small percentage of inaccuracies.

Article Abstract

Purpose/objective: Reliable detection of thoracic aortic dilatation (TAD) is mandatory in clinical routine. For ECG-gated CT angiography, automated deep learning (DL) algorithms are established for diameter measurements according to current guidelines. For non-ECG gated CT (contrast enhanced (CE) and non-CE), however, only a few reports are available. In these reports, classification as TAD is frequently unreliable with variable result quality depending on anatomic location with the aortic root presenting with the worst results. Therefore, this study aimed to explore the impact of re-training on a previously evaluated DL tool for aortic measurements in a cohort of non-ECG gated exams.

Methods & Materials: A cohort of 995 patients (68 ± 12 years) with CE (n = 392) and non-CE (n = 603) chest CT exams was selected which were classified as TAD by the initial DL tool. The re-trained version featured improved robustness of centerline fitting and cross-sectional plane placement. All cases were processed by the re-trained DL tool version. DL results were evaluated by a radiologist regarding plane placement and diameter measurements. Measurements were classified as correctly measured diameters at each location whereas false measurements consisted of over-/under-estimation of diameters.

Results: We evaluated 8948 measurements in 995 exams. The re-trained version performed 8539/8948 (95.5%) of diameter measurements correctly. 3765/8948 (42.1%) of measurements were correct in both versions, initial and re-trained DL tool (best: distal arch 655/995 (66%), worst: Aortic sinus (AS) 221/995 (22%)). In contrast, 4456/8948 (49.8%) measurements were correctly measured only by the re-trained version, in particular at the aortic root (AS: 564/995 (57%), sinotubular junction: 697/995 (70%)). In addition, the re-trained version performed 318 (3.6%) measurements which were not available previously. A total of 228 (2.5%) cases showed false measurements because of tilted planes and 181 (2.0%) over-/under-segmentations with a focus at AS (n = 137 (14%) and n = 73 (7%), respectively).

Conclusion: Re-training of the DL tool improved diameter assessment, resulting in a total of 95.5% correct measurements. Our data suggests that the re-trained DL tool can be applied even in non-ECG-gated chest CT including both, CE and non-CE exams.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejrad.2023.111093DOI Listing

Publication Analysis

Top Keywords

diameter measurements
16
re-trained version
16
measurements
13
re-trained tool
12
deep learning
8
non-ecg gated
8
aortic root
8
plane placement
8
correctly measured
8
false measurements
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!