Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background Aims: The increasing demand of clinical-grade mesenchymal stromal cells (MSCs) for use in advanced therapy medicinal products (ATMPs) require a re-evaluation of manufacturing strategies, ensuring scalability from two-dimensional (2D) surfaces to volumetric (3D) productivities. Herein we describe the design and validation of a Good Manufacturing Practice-compliant 3D culture methodology using microcarriers and 3-L single-use stirred tank bioreactors (STRs) for the expansion of Wharton's jelly (WJ)-derived MSCs in accordance to current regulatory and quality requirements.
Methods: MSC,WJ were successfully expanded in 3D and final product characterization was in conformity with Critical Quality Attributes and product specifications previously established for 2D expansion conditions.
Results: After 6 days of culture, cell yields in the final product from the 3D cultures (mean 9.48 × 10 ± 1.07 × 10 cells) were slightly lower but comparable with those obtained from 2D surfaces (mean 9.73 × 10 ± 2.36 × 10 cells) after 8 days. In all analyzed batches, viability was >90%. Immunophenotype of MSC,WJ was highly positive for CD90 and CD73 markers and lacked of expression of CD31, CD45 and HLA-DR. Compared with 2D expansions, CD105 was detected at lower levels in 3D cultures due to the harvesting procedure from microcarriers involving trypsin at high concentration, and this had no impact on multipotency. Cells presented normal karyotype and strong immunomodulatory potential in vitro. Sterility, Mycoplasma, endotoxin and adventitious virus were negative in both batches produced.
Conclusions: In summary, we demonstrated the establishment of a feasible and reproducible 3D bioprocess using single-use STR for clinical-grade MSC,WJ production and provide evidence supporting comparability of 3D versus 2D production strategies. This comparability exercise evaluates the direct implementation of using single-use STR for the scale-up production of MSC,WJ and, by extension, other cell types intended for allogeneic therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcyt.2023.08.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!