5-Pyridoxic-acid oxygenase, a cytoplasmic enzyme formed when Arthrobacter Cr-7 is grown with pyridoxine as a sole source of carbon and nitrogen, was purified about 190-fold to homogeneity from fully induced cells. The enzyme catalyzes Reaction a, (Formula: see text) the essential ring-opening step in the degradation of pyridoxine, and provides a second example of an FAD-dependent oxygenase that adds both two hydrogen and two oxygen atoms to its substrate. 5-Pyridoxic-acid oxygenase has an isoelectric point of 4.6, functions optimally between pH 7 and 8, appears to contain a single subunit of Mr = 51,000 and one FAD (but no iron) per subunit, and is readily resolved by precipitation with ammonium sulfate at pH 3.0. FMN and riboflavin do not replace FAD as coenzyme, but their presence enhances a normally minor side reaction (Reaction b) NAD(P)H + H+ + O2----NAD(P)+ + H2O2 (b) catalyzed by the holoenzyme. Reaction b also is enhanced when the poorly utilized analogues, 3-hydroxy-2-methylpyridine-5-carboxylic acid or NADH, replace 5-pyridoxic acid or NADPH, respectively, as substrates in Reaction a. Each of the enzymes required in two different pathways for degradation of pyridoxine to anabolic intermediates has now been studied. A comparison of these two pathways and their enzymes is provided.
Download full-text PDF |
Source |
---|
Arch Biochem Biophys
January 2010
Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand.
2-Methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase (MHPCO) and 5-pyridoxic acid oxygenase are flavoenzymes catalyzing an aromatic hydroxylation and a ring-cleavage reaction. Both enzymes are involved in biodegradation of vitamin B6 in bacteria. Oxygen-tracer experiments have shown that the enzymes are monooxygnases since only one atom of molecular oxygen is incorporated into the products.
View Article and Find Full Text PDF5-Pyridoxic-acid oxygenase, a cytoplasmic enzyme formed when Arthrobacter Cr-7 is grown with pyridoxine as a sole source of carbon and nitrogen, was purified about 190-fold to homogeneity from fully induced cells. The enzyme catalyzes Reaction a, (Formula: see text) the essential ring-opening step in the degradation of pyridoxine, and provides a second example of an FAD-dependent oxygenase that adds both two hydrogen and two oxygen atoms to its substrate. 5-Pyridoxic-acid oxygenase has an isoelectric point of 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!