Transcriptomic response of Cinachyrella cf. cavernosa sponges to spatial competition.

Mol Ecol

Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, München, Germany.

Published: September 2023

Spatial competition in the intertidal zones drives the community structure in marine benthic habitats. Organisms inhabiting these areas not only need to withstand fluctuations in temperature, water level, pH, and salinity but also need to compete for the best available space. Sponges are key members of the intertidal zones, and their life history processes (e.g. growth, reproduction, and regeneration) are affected by competition. Here, we used transcriptomics to investigate the effects of interspecific competition between the tetillid sponge Cinachyrella cf. cavernosa, the zoantharid Zoanthus sansibaricus and the macroalgae Dictyota ciliolata in the field. The analysis of differentially expressed genes showed that Z. sansibaricus was the more stressful competitor to C. cf. cavernosa, which showed an upregulation of cellular respiration under stress of competition. Similarly, an upregulation of energy metabolism, lipid metabolism and the heat-shock protein (HSP) 70 was also observed along with an increase in viral load and decreased ability to synthesize protein. A downregulation of purine and pyrimidine metabolism indicated a reduction in the physiological activities of the competing sponges. Moreover, a putative case of possible kleptocnidism, not previously reported in C. cf. cavernosa, was also observed. This study offers a glimpse into the inner workings of marine organisms competing for spatial resources using transcriptome data.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.17122DOI Listing

Publication Analysis

Top Keywords

cinachyrella cavernosa
8
spatial competition
8
intertidal zones
8
competition
5
transcriptomic response
4
response cinachyrella
4
cavernosa
4
cavernosa sponges
4
sponges spatial
4
competition spatial
4

Similar Publications

Spatial competition in the intertidal zones drives the community structure in marine benthic habitats. Organisms inhabiting these areas not only need to withstand fluctuations in temperature, water level, pH, and salinity but also need to compete for the best available space. Sponges are key members of the intertidal zones, and their life history processes (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!