Assessment of radionuclides, indoor radon (222RnI), radon exhalation (222Rnex), and soil characteristics in the coastal part of Kpando has been studied using HPGe, CR-39 and sieving techniques. Statistical analysis between radionuclides, radon levels and soil characteristics was done using Pearson's correlation. The mean radionuclide concentration, radon levels and soil characteristics were obtained as 226Ra (23.1 ± 1.4 Bq per kg), 232Th (34.6 ± 2.9 Bq per kg), 40K (187.1 ± 13.7 Bq per kg), 222RnI (64.70 ± 2.7 Bq per m3), 222Rnex (7.9 ± 0.5 μBq per m2h), sandy (45.9 ± 3.9%), silt (40.7 ± 3.1%), clay (13.5 ± 0.8%), porosity (0.6 ± 0.1) and moisture (7.6 ± 0.8%). Radiological effects estimated were within recommended limits. The maximum positive and negative coefficients exist between 222Ra/222Rnex (1.0) and 222Rnex/MC (-0.9), respectively. Radon exhalation correlates better with soil characteristics. The statistical analysis indicated that soil characteristics have significant effects on radionuclides and radon levels in soils and dwellings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/rpd/ncad255 | DOI Listing |
Chemosphere
January 2025
Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, Delhi, India, 110016. Electronic address:
The establishment of site-specific target limits (SSTLs) for old municipal solid waste (MSW) dumpsites is essential for defining remediation goals in a scientifically rigorous manner. However, a standardized framework for achieving this is currently lacking. This study proposes a comprehensive framework that integrates high-resolution site characterization (HRSC) tools, targeted sampling, and contaminant transport modeling to derive SSTLs.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China. Electronic address:
In this study, a large drinking water reservoir (Fengshuba Reservoir) was chosen as a representative case, and the bacterial communities in the sediments and soils of Water-level fluctuating zone (WLFZ) as well as their responses to heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) were systematically investigated. The results indicated that the abundance and diversity of the bacterial community obviously changed with seasonal hydrological variations in sediments, and the absolute abundance and composition of bacteria community differed significantly between the sediment phase and soil phase. Bacteria with the ability to degrade pollutants rapidly proliferate and gain ascendancy in the soil phase, with Burkholderia-Caballeronia-Paraburkholderia (B-C-P) and Bradyrhizobium forming the core of the largest community.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China.
Microbial inoculations have emerged as a key approach to address the low natural microbial activity of traditional composting technologies. It is crucial for successfully promoting manure composting to understand the influences of microbial inoculations on fungal communities and its mechanisms. To investigate the effects of microbial inoculation on diversity characteristics, tropic mode, and co-occurrence network of fungal communities during composting, an aerobic composting experiment of chicken manure inoculated with microbial agents was performed.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Peatlands store one-third of the world's soil organic carbon. Globally increased fires altered peat soil organic matter chemistry, yet the redox property and molecular dynamics of peat-dissolved organic matter (PDOM) during fires remain poorly characterized, limiting our understanding of postfire biogeochemical processes. Clarifying these dynamic changes is essential for effective peatland fire management.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Horticultural Sciences, College of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Kerman, Iran.
Global warming and declining rainfall in recent years have led to increased water and soil salinity in Iran agricultural lands. To address these challenges, greenhouse cultivation, particularly soilless culture, emerges as a critical solution for mitigating the effect of soil salinity and water scarcity on vegetable plant production in Iran. The aim of this experiment was to compare the growth and physiological responses of cucumber plants cultivated in both soil and soilless systems, using three distinct nutrient solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!