The scalloped perchlet Ambassis nalua is one of the dominant fishes in the Estuarine Pranburi River, Thailand. It is suggested that this fish is in the secondary trophic level with a carnivorous nature. Studies on digestive system will help us further identify the niche of this species in the food web/food chain. The present study therefore aimed to report the detailed structure and ultrastructure of A. nalua digestive system. Fish samples (n = 30) with a total length of 5.7 ± 0.5 cm were obtained using beach seines from the Estuarine Pranburi River. Their digestive tract length and intestine coeficient were 3.6 ± 0.07 cm and 0.91, respectively. Light microscopic observation showed that the digestive wall comprised four layers, namely mucosa, submucosa, muscularis, and serosa. The prominent mucous-secreting cells were found in the mucosal oesophagus. The stomach had many gastric folds, with height and width being 649.76 ± 85.15 and 370.30 ± 68.56 μm, respectively. Gastric glands were found in the anterior stomach but not in the posterior stomach. Each gastric gland was made up of a single type of columnar cells. The gastric cells were ultrastructurally characterized by numerous mitochondria and well-developed secretory granules of varying sizes. A few small vacuoles were also identified in the apical area of the gastric cells. The intestine had two regions (anterior and posterior intestines), and pyloric caecum was absent. The density of the goblet cell was significantly higher in the posterior intestine. These results provide basic knowledge of the digestive system of A. nalua, and the low intestine coefficient and the absence of pyloric caecum suggest the carnivorous feeding habit of this species.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfb.15566DOI Listing

Publication Analysis

Top Keywords

digestive system
12
digestive tract
8
ambassis nalua
8
gastric gland
8
estuarine pranburi
8
pranburi river
8
stomach gastric
8
gastric cells
8
pyloric caecum
8
digestive
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!