Optically Active MXenes in Van der Waals Heterostructures.

Adv Mater

Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw, 02-507, Poland.

Published: October 2023

The vertical integration of distinct 2D materials in van der Waals (vdW) heterostructures provides the opportunity for interface engineering and modulation of electronic as well as optical properties. However, scarce experimental studies reveal many challenges for vdW heterostructures, hampering the fine-tuning of their electronic and optical functionalities. Optically active MXenes, the most recent member of the 2D family, with excellent hydrophilicity, rich surface chemistry, and intriguing optical properties, are a novel 2D platform for optoelectronics applications. Coupling MXenes with various 2D materials into vdW heterostructures can open new avenues for the exploration of physical phenomena of novel quantum-confined nanostructures and devices. Therefore, the fundamental basis and recent findings in vertical vdW heterostructures composed of MXenes as a primary component and other 2D materials as secondary components are examined. Their robust designs and synthesis approaches that can push the boundaries of light-harvesting, transition, and utilization are discussed, since MXenes provide a unique playground for pursuing an extraordinary optical response or unusual light conversion features/functionalities. The recent findings are finally summarized, and a perspective for the future development of next-generation vdW multifunctional materials enriched by MXenes is provided.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202301850DOI Listing

Publication Analysis

Top Keywords

vdw heterostructures
16
optically active
8
active mxenes
8
van der
8
der waals
8
optical properties
8
mxenes
6
heterostructures
5
vdw
5
mxenes van
4

Similar Publications

Tunable band alignment and large power conversion efficiency in a two-dimensional InS/ZnInS heterostructure.

RSC Adv

December 2024

Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University Chongqing 400715 China

Heterostructures can efficiently modulate the bandgap of semiconductors and enhance the separation of photocarriers, thereby enhancing the performance of optoelectronic devices. Herein, we design an InS/ZnInS van der Waals (vdW) heterostructure and investigate its electronic and photovoltaic properties using first principles calculation. Compared to its individual monolayers, the InS/ZnInS heterostructure not only possesses a smaller band gap of 2.

View Article and Find Full Text PDF

Semiconducting single-wall carbon nanotubes (s-SWCNTs) represent one of the most promising materials for surpassing Moore's Law and developing the next generation of electronic devices. Despite numerous developed approaches, reducing the contact resistance of s-SWCNTs networks remains a significant challenge in achieving further enhancements in electronic performance. In this study, antimony triiodide (SbI) is efficiently encapsulated within high-purity s-SWCNTs films at low temperatures, forming 1D SbI@s-SWCNTs vdW heterostructures.

View Article and Find Full Text PDF

Designing and discovering superior type-II band alignment are crucial for advancing optoelectronic device technologies. Here, we employ first-principles calculations to investigate the evolution of band edges in monolayer MoS, boron phosphide (BP), and MoS/BP heterostructures before and after their rolling into nanotubes. Our research results indicate that the intrinsic MoS/BP vertical heterostructures exhibit a type-II direct bandgap, but this feature is not robust under strain.

View Article and Find Full Text PDF

A Review of Bandgap Engineering and Prediction in 2D Material Heterostructures: A DFT Perspective.

Int J Mol Sci

December 2024

Department of Physics, Gachon University, Seongnum-si 13120, Gyeonggi-do, Republic of Korea.

The advent of two-dimensional (2D) materials and their capacity to form van der Waals (vdW) heterostructures has revolutionized numerous scientific fields, including electronics, optoelectronics, and energy storage. This paper presents a comprehensive investigation of bandgap engineering and band structure prediction in 2D vdW heterostructures utilizing density functional theory (DFT). By combining various 2D materials, such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides, and blue phosphorus, these heterostructures exhibit tailored properties that surpass those of individual components.

View Article and Find Full Text PDF

Nanoscale Ferroelectric Programming of van der Waals Heterostructures.

Nano Lett

December 2024

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.

We demonstrate an approach to creating nanoscale potentials in van der Waals layers integrated with a buried programmable ferroelectric layer. Using ultra-low-voltage electron beam lithography (ULV-EBL), we can program the ferroelectric polarization in AlBN (AlBN) thin films, generating structures with sizes as small as 35 nm. We demonstrate the ferroelectric field effect with a graphene/vdW stack on AlBN by creating a p-n junction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!