Whole-genome doubling in tissues and tumors.

Trends Genet

Department of Medicine, Division of Hematology and Oncology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; Department of Pharmacology, Physiology, and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA. Electronic address:

Published: December 2023

The overwhelming majority of proliferating somatic human cells are diploid, and this genomic state is typically maintained across successive cell divisions. However, failures in cell division can induce a whole-genome doubling (WGD) event, in which diploid cells transition to a tetraploid state. While some WGDs are developmentally programmed to produce nonproliferative tetraploid cells with specific cellular functions, unscheduled WGDs can be catastrophic: erroneously arising tetraploid cells are ill-equipped to cope with their doubled cellular and chromosomal content and quickly become genomically unstable and tumorigenic. Deciphering the genetics that underlie the genesis, physiology, and evolution of whole-genome doubled (WGD) cells may therefore reveal therapeutic avenues to selectively eliminate pathological WGD cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10840902PMC
http://dx.doi.org/10.1016/j.tig.2023.08.004DOI Listing

Publication Analysis

Top Keywords

whole-genome doubling
8
tetraploid cells
8
wgd cells
8
cells
6
doubling tissues
4
tissues tumors
4
tumors overwhelming
4
overwhelming majority
4
majority proliferating
4
proliferating somatic
4

Similar Publications

Background: The endosymbiotic relationship between Wolbachia bacteria and insects has been of interest for many years due to their diverse types of host reproductive phenotypic manipulation and potential role in the host's evolutionary history and population dynamics. Even though infection rates are high in Lepidoptera and specifically in butterflies, and reproductive manipulation is present in these taxa, less attention has been given to understanding how Wolbachia is acquired and maintained in their natural populations, across and within species having continental geographical distributions.

Results: We used whole genome sequencing data to investigate the phylogenetics, demographic history, and infection rate dynamics of Wolbachia in four species of the Spicauda genus of skipper butterflies (Lepidoptera: Hesperiidae), a taxon that presents sympatric and often syntopic distribution, with drastic variability in species abundance in the Neotropical region.

View Article and Find Full Text PDF

(1) Background: , a lactic acid-producing bacterium, displays characteristics of both and genera. Clinical evidence suggests its potential health benefits. This study evaluated the safety of AO1167B as a candidate probiotic supplement.

View Article and Find Full Text PDF

Clinical and Cytogenetic Impact of Maternal Balanced Double Translocation: A Familial Case of 15q11.2 Microduplication and Microdeletion Syndromes with Genetic Counselling Implications.

Genes (Basel)

November 2024

Laboratório de Citogenética Clínica, Centro de Genética Médica, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira-Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil.

Background: Balanced chromosomal translocations occur in approximately 0.16 to 0.20% of live births.

View Article and Find Full Text PDF

LINE-1 (L1) retrotransposition is widespread in many cancers, especially those with a high burden of chromosomal rearrangements. However, whether and to what degree L1 activity directly impacts genome integrity is unclear. Here, we apply whole-genome sequencing to experimental models of L1 expression to comprehensively define the spectrum of genomic changes caused by L1.

View Article and Find Full Text PDF

Understanding the molecular landscape of nonmuscle-invasive bladder cancer (NMIBC) is essential to improve risk assessment and treatment regimens. We performed a comprehensive genomic analysis of patients with NMIBC using whole-exome sequencing (n = 438), shallow whole-genome sequencing (n = 362) and total RNA sequencing (n = 414). A large genomic variation within NMIBC was observed and correlated with different molecular subtypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!