The objective of the present study was to review the existing epidemiological and laboratory findings supporting the role of toxic metal exposure in non-alcoholic fatty liver disease (NAFLD). The existing epidemiological studies demonstrate that cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg) exposure was associated both with an increased risk of NAFLD and altered biochemical markers of liver injury. Laboratory studies demonstrated that metal exposure induces hepatic lipid accumulation resulting from activation of lipogenesis and inhibition of fatty acid β-oxidation due to up-regulation of sterol regulatory element-binding protein 1 (SREBP-1), carbohydrate response element binding protein (ChREBP), peroxisome proliferator-activated receptor γ (PPARγ), and down-regulation of PPARα. Other metabolic pathways involved in this effect may include activation of reactive oxygen species (ROS)/extracellular signal-regulated kinase (ERK) and inhibition of AMP-activated protein kinase (AMPK) signaling. The mechanisms of hepatocyte damage during development of metal-induced hepatic steatosis were shown to involve oxidative stress, endoplasmic reticulum stress, pyroptosis, ferroptosis, and dysregulation of autophagy. Induction of inflammatory response contributing to progression of NAFLD to non-alcoholic steatohepatitis (NASH) upon toxic metal exposure was shown to be mediated by up-regulation of nuclear factor κB (NF-κB) and activation of NRLP3 inflammasome. Moreover, epigenetic effects of the metals, as well as their effect on gut microbiota and gut wall integrity were also shown to mediate their role in NAFLD development. Despite being demonstrated for Cd, Pb, and As, the contribution of these mechanisms into Hg-induced NAFLD is yet to be estimated. Therefore, further studies are required to clarify the intimate mechanisms underlying the relationship between heavy metal and metalloid exposure and NAFLD/NASH to reveal the potential targets for treatment and prevention of metal-induced NAFLD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2023.117134 | DOI Listing |
J Family Med Prim Care
December 2024
Retired Assistant Research Officer, Department of Occupational Health, All India Institute of Hygiene and Public Health, Kolkata, West Bengal, India.
Introduction: Workers who work in metallurgy factories processing aluminium are at risk of exposure to various kinds of metals and chemicals.
Objective: To describe sociodemographic characteristics and to find out morbidity profile of study participants .
Methods: A cross-sectional O bservational descriptive study was conducted in two aluminium processing metallurgy factories in Howrah district of Indian state of West Bengal.
Curr Protoc
January 2025
Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland.
In vivo calcium imaging in freely moving rats using miniscopes provides valuable information about the neural mechanisms of behavior in real time. A gradient index (GRIN) lens can be implanted in deep brain structures to relay activity from single neurons. While such procedures have been successful in mice, few reports provide detailed procedures for successful surgery and long-term imaging in rats, which are better suited for studying complex human behaviors.
View Article and Find Full Text PDFDiabetol Metab Syndr
January 2025
School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, 7 Sassoon Road, Pok Fu Lam, Hong Kong, SAR, China.
Background: Epidemiological research on the association between heavy metals and congestive heart failure (CHF) in individuals with abnormal glucose metabolism is scarce. The study addresses this research gap by examining the link between exposure to heavy metals and the odds of CHF in a population with dysregulated glucose metabolism.
Method: This cross-sectional study includes 7326 patients with diabetes and prediabetes from the National Health and Nutrition Examination Survey from 2011 to 2018.
Sci Rep
January 2025
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, 816-8580, Japan.
This study aimed to evaluate the effects of plasma treated metal contaminated water, used for irrigation, on plant growth. Zinc (Zn) is a commonly used metal that can enter the environment through industrial processes. It may be released as particles into the atmosphere or discharged as wastewater into waterways or the ground.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
Metals have been used throughout history to manage disease. With the rising incidence of antibiotic-resistant bacterial strains, metal-based antimicrobials (MBAs) have re-emerged as an alternative to combat infections. Gallium nitrate has shown promising efficacy against several pathogens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!