Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Accurate prediction of carbon price is of great significance to national energy security and climate environment policies. This paper comes up with a new forecasting model variational mode decomposition, convolutional neural network, bidirectional long short-term memory, and multi-layer perceptron (VMD-CNN-BILSTM-MLP) to predict EUA carbon futures prices in two periods of five years before and after the introduction of emission reduction policies. The parameters of the VMD model are determined by genetic algorithm (GA) firstly, carbon futures prices are broken down into subsequences of different frequencies using the model. The MLP model is then applied to predict the highest frequency sequence. The CNN-BILSTM model is applied to predict other subsequences later. Finally, the predicted values of each subsequence are linearly added to obtain the final result of the entire model. The prediction effect of the model is mainly tested by root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), coefficient of determination (R) and the modification of Diebold-Mariano test (MDM). In both periods, the proposed model predicts better than the other models, and the prediction effect of carbon futures price in the first five years is a little better than that in the second five years. In general, the experiment of predicting carbon futures prices in two different periods, the experiment of changing the proportion of data set and the experiment of predicting the whole sample all prove that the mixed model proposed in this paper has good prediction effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.118962 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!