The ultra-long room temperature phosphorescent hydrogen-bonded organic framework (RTP HOF) materials can achieve long afterglow via ligand hydrogen bond interaction and water implement to suppress the non-radiative decays by matrices rigidification, and its electron donor conjugated structure is first developed as a phosphorescent quencher. The Eu/Mn co-doped ZnGeO phosphors (ZGO:Mn, Eu) with abundant metal sites and enhanced phosphorescence were synthesized as response factors and electron acceptors, combined with RTP HOFs to form microstructures featuring multi-color modulation, as an high-level anti-counterfeiting platform and lysophosphatidic acid (LPA) detection unit. LPA is an ideal plasma biomarker for early diagnosis of ovarian and other gynecologic cancers. This detection strategy relies on the differential coordination substitution to restore ZGO:Mn, Eu phosphorescence through synergistic coordination of LPA and the hydrophobic assistance of LPA, and dual functional groups identification of LPA achieve specific detection at the nanomolar level. The anti-counterfeiting platform can fetch specific information by controlling the afterglow distinction and excited light from ZGO:Mn, Eu and RTP HOF. This study not only provides a typical case of the preparation of two phosphors with heterogeneous optical properties, but also expands the application field of combined phosphors as intelligent luminescent materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.09.043 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!