In extrusion-based 3D printing, the use of synthetic polymeric hydrogels can facilitate fabrication of cellularized and implanted scaffolds with sufficient mechanical properties to maintain the structural integrity and physical stress within the in vivo conditions. However, synthetic hydrogels face challenges due to their poor properties of cellular adhesion, bioactivity, and biofunctionality. New compositions of hydrogel inks have been designed to address this limitation. A viscous poly(maleate-propylene oxide)-lipoate-poly(ethylene oxide) (MPLE) hydrogel is recently developed that shows high-resolution printability, drug-controlled release, excellent mechanical properties with adhesiveness, and biocompatibility. In this study, the authors demonstrate that the incorporation of cell-adhesive proteins like gelatin and albumin within the MPLE gel allows printing of biologically functional 3D scaffolds with rapid cell spreading (within 7 days) and high cell proliferation (twofold increase) as compared with MPLE gel only. Addition of proteins (10% w/v) supports the formation of interconnected cell clusters (≈1.6-fold increase in cell areas after 7-day) and spreading of cells in the printed scaffolds without additional growth factors. In in vivo studies, the protein-loaded scaffolds showed excellent biocompatibility and increased angiogenesis without inflammatory response after 4-week implantation in mice, thus demonstrating the promise to contribute to the printable tough hydrogel inks for tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.202300316DOI Listing

Publication Analysis

Top Keywords

incorporation cell-adhesive
8
cell-adhesive proteins
8
mechanical properties
8
hydrogel inks
8
mple gel
8
proteins 3d-printed
4
3d-printed lipoic
4
lipoic acid-maleic
4
acid-maleic acid-polypropylene
4
acid-polypropylene glycol-based
4

Similar Publications

Magnetoactive, -Inspired Hammocks to Probe Lung Epithelial Cell Function.

Cell Mol Bioeng

October 2024

Materials Science & Engineering, College of Engineering, University of Michigan, Ann Arbor, USA.

Introduction: Mechanical forces provide critical biological signals to cells. Within the distal lung, tensile forces act across the basement membrane and epithelial cells atop. Stretching devices have supported studies of mechanical forces in distal lung epithelium to gain mechanistic insights into pulmonary diseases.

View Article and Find Full Text PDF

Osteoblasts win the race for the surface on DNA polyelectrolyte multilayer coatings against S. epidermidis but not against S. aureus.

Colloids Surf B Biointerfaces

January 2025

Department of Bionanosciences, Institute of Colloid and Biointerface Science, BOKU University, Muthgasse 11, Vienna 1190, Austria. Electronic address:

Biomaterial-associated infections pose severe challenges in modern medicine. Previously, we reported that polyanionic DNA surface coatings repel bacterial adhesion and support osteoblast-like cell attachment in monoculture experiments, candidate for orthopaedic implant coatings. However, monocultures lack the influence of bacteria or bacterial toxins on osteoblast-like cell adhesion to biomaterial surfaces.

View Article and Find Full Text PDF

Microgels show advantages over bulk hydrogels due to convenient control over microgel size and composition, and the ability to use microgels to modularly construct larger hierarchical scaffold hydrogel materials. Here, supramolecular chemistry is used to formulate supramolecular polymer, dynamic microgels solely held together by non-covalent interactions. Four-fold hydrogen bonding ureido-pyrimidinone (UPy) monomers with different functionalities are applied to precisely tune microgel properties in a modular way, via variations in monomer concentration, bifunctional crosslinker ratio, and the incorporation of supramolecular dyes and peptides.

View Article and Find Full Text PDF

Bioresorbable shape memory polymers (SMP) are an emerging class of polymers that can help address several challenges associated with minimally invasive surgery by providing a solution for structural tissue repair. Like most synthetic polymer networks, SMPs require additional biorelevance and modification for biomedical applications. Methodologies used to incorporate bioactive ligands must preserve SMP thermomechanics and ensure biofunctionality following in vivo delivery.

View Article and Find Full Text PDF

Implantable bioelectrodes have attracted significant attention for precise in vivo signal transduction with living systems. Conductive polymers, including polypyrrole (PPy), have been widely used as bioelectrodes due to their large surface areas, high charge injections, and versatilities for modification. Especially, several natural biopolymers, such as hyaluronic acid (HA), can be incorporated into conductive polymers to produce biomimetic electrodes with better biocompatibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!