Thermoelectric materials seamlessly convert thermal into electrical energy, making them promising for power generation and cooling applications. Although historically the thermoelectric effect was first discovered in metals, state-of-the-art research focuses on semiconductors. Here, we discover unprecedented thermoelectric performance in metals and realize ultrahigh power factors up to 34 mW m K in binary NiAu alloys, more than twice larger than in any bulk material above room temperature, reaching ∼ 0.5. In metallic NiAu alloys, large Seebeck coefficients originate from electron-hole selective scattering of Au electrons into more localized Ni states. This intrinsic energy filtering effect owing to the unique band structure yields a strongly energy-dependent carrier mobility. While the metastable nature of the Ni-Au system as well as the high cost of Au pose some constraints for practical applications, our work challenges the common belief that good metals are bad thermoelectrics and presents an auspicious route toward high thermoelectric performance exploiting interband scattering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10881022PMC
http://dx.doi.org/10.1126/sciadv.adj1611DOI Listing

Publication Analysis

Top Keywords

thermoelectric performance
12
niau alloys
12
high thermoelectric
8
metallic niau
8
interband scattering
8
performance metallic
4
alloys interband
4
thermoelectric
4
scattering thermoelectric
4
thermoelectric materials
4

Similar Publications

The next generation of soft electronics will expand to the third dimension. This will require the integration of mechanically compliant 3D functional structures with stretchable materials. Here, omnidirectional direct ink writing (DIW) of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) aerogels with tunable electrical and mechanical performance is demonstrated, which can be integrated with soft substrates.

View Article and Find Full Text PDF

An modelling workflow is used to predict the thermoelectric properties and figure of merit of the lanthanide cobalates LaCoO, PrCoO and NdCoO in the orthorhombic phase with the low-spin magnetic configuration. The LnCoO show significantly lower lattice thermal conductivity than the widely-studied SrTiO, due to lower phonon velocities, with a large component of the heat transport through an intraband tunnelling mechanism characteristic of amorphous materials. Comparison of the calculations to experimental measurements suggests the p-type electrical properties are significantly degraded by the thermal spin crossover, and materials-engineering strategies to suppress this could yield improved .

View Article and Find Full Text PDF

"Popping the Ion-Basket": Enhancing Thermoelectric Performance of Conjugated Polymers by Blending with Latently Dissociable Perovskite Quantum Dots.

Adv Sci (Weinh)

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.

A novel additive method to boost the Seebeck coefficient of doped conjugated polymers without a significant loss in electrical conductivity is demonstrated. Perovskite (CsPbBr) quantum dots (QDs) passivated by ligands with long alkyl chains are mixed with a conjugated polymer in a solution phase to form polymer-QD blend films. Solution sequential doping of the blend film with AuCl solution not only doped the conjugated polymer but also decomposed the QDs, resulting in a doped conjugated polymer film embedded with separated ions dissociated from the QDs.

View Article and Find Full Text PDF

Materials with both high thermoelectric (TE) performance and excellent magnetocaloric (MC) properties near room temperature are of great importance for all-solid-state TE/MC hybrid refrigeration. A combination of such two critical characteristics, however, is hardly attainable in single phase compounds. Herein we report a composite material that comprises Bi-Sb-Te thermoelectric and Ni-Mn-In magnetocaloric components as an innovative thermoelectromagnetic material with dual functionalities.

View Article and Find Full Text PDF

In ordered magnets, the elementary excitations are spin waves (magnons), which obey Bose-Einstein statistics. Similarly to Cooper pairs in superconductors, magnons can be paired into bound states under attractive interactions. The Zeeman coupling to a magnetic field is able to tune the particle density through a quantum critical point, beyond which a 'hidden order' is predicted to exist.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!