Plant-ungulate interactions are critical in shaping the structure of Mediterranean plant communities. Nevertheless, there is a dearth of knowledge on how plant intrinsic and extrinsic factors mediate the sign and strength of plant-ungulate interactions. This is most relevant when addressing natural or assisted restoration of plant communities in human-disturbed areas. We conducted field-clipping experiments simulating how different intensities of ungulate herbivory may affect the natural regeneration and establishment of the Mediterranean dwarf palm (Chamaerops humilis), a keystone species in Mediterranean ecosystems. We quantified seedling survival and size in two human-disturbed sites (SW Spain) where wild and domestic ungulates exert high herbivory pressure on vegetation. Severe clipping and seedling aging reduced rates of seedling survival. In contrast, moderate clipping did not affect seedling survival, suggesting a certain degree of C. humilis tolerance to herbivory. Severe clipping reduced seedling height strongly but not seedling diameter, and these effects seem to have decreased seedling survival. Nurse shrubs increased seedling size, which likely improved seedling survival. We also found seedling compensatory growth which varied between study sites. Field-clipping experiments can help disentangle effects of plant extrinsic and intrinsic factors on the sign and strength of plant-ungulate interactions and their ecological consequences on the dynamics of human-disturbed ecosystems. We call attention to the importance of appropriately managing scenarios of severe herbivory and summer droughts, particularly frequent in Mediterranean ecosystems, as synergic effects of such key drivers can negatively affect the structure and dynamics of plant communities and endanger their conservation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/plb.13581 | DOI Listing |
Plant Mol Biol
January 2025
Department of Plant Pathology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra (GKVK), Bengaluru, India.
In a wake of shifting climatic scenarios, plants are frequently forced to undergo a spectrum of abiotic and biotic stresses at various stages of growth, many of which have a detrimental effect on production and survival. Naturally, microbial consortia partner up to boost plant growth and constitute a diversified ecosystem against abiotic stresses. Despite this, little is known pertaining to the interplay between endophytic microbes which release phytohormones and stimulate plant development in stressed environments.
View Article and Find Full Text PDFGM Crops Food
December 2025
College of Agronomy, Jilin Agricultural University, Changchun, China.
Maize ( L.) is a widely grown food crop around the world. Drought stress seriously affects the growth and development process of plants and causes serious damage to maize yield.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
Background: Non-structural carbohydrates (NSCs) are key substances for metabolic processes in plants, providing energy for growth, development, and responses to environmental stress. Pruning mother bamboo in a clump can significantly affect the NSCs allocation of new shoots, thereby affecting their growth. Moso bamboo (Phyllostachys edulis) is an important economic bamboo species with a highest planting area in China.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, (Third Military Medical University), Chongqing, China.
Acute kidney injury (AKI) has become a disease of global concern due to its high morbidity and mortality. This has highlighted the need for renoprotective agents. Astragaloside IV (AS-IV) is a saponin isolated from Astragalus membranaceus with good antioxidant, anti-inflammatory and anti-tumor properties.
View Article and Find Full Text PDFPlanta
January 2025
Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil.
Both, Serendipita indica and AMF, show promise as sustainable biofertilizers for reforestation, improving nutrient uptake and stress tolerance, despite contrasting effects on photosynthetic capacity and biomass allocation. Reclaiming degraded areas is essential for biodiversity conservation and enhancing ecosystem services enhancement, especially when using native species. This study investigated Schinus terebinthifolius Raddi, a native Brazilian species, and its compatibility with plant growth-promoting microorganisms (PGPM), including an endophytic fungus (Serendipita indica) and a consortium of arbuscular mycorrhizal fungi (AMF), to identify effective strategies for reforestation in nutrient-poor environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!