A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Potential of ChatGPT as a Self-Diagnostic Tool in Common Orthopedic Diseases: Exploratory Study. | LitMetric

The Potential of ChatGPT as a Self-Diagnostic Tool in Common Orthopedic Diseases: Exploratory Study.

J Med Internet Res

Department of Functional Joint Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.

Published: September 2023

AI Article Synopsis

  • AI, particularly NLP like ChatGPT, is becoming popular in medicine, but its effectiveness in self-diagnosing and recommending medical consultations for orthopedic diseases needs evaluation.
  • The study aimed to assess ChatGPT's accuracy in self-diagnosing five common orthopedic conditions and its recommendations for seeking medical advice.
  • Results showed high accuracy for carpal tunnel syndrome, but poor for cervical myelopathy, with variability in reproducibility across different conditions and raters, highlighting limitations in ChatGPT's medical consultation advice.

Article Abstract

Background: Artificial intelligence (AI) has gained tremendous popularity recently, especially the use of natural language processing (NLP). ChatGPT is a state-of-the-art chatbot capable of creating natural conversations using NLP. The use of AI in medicine can have a tremendous impact on health care delivery. Although some studies have evaluated ChatGPT's accuracy in self-diagnosis, there is no research regarding its precision and the degree to which it recommends medical consultations.

Objective: The aim of this study was to evaluate ChatGPT's ability to accurately and precisely self-diagnose common orthopedic diseases, as well as the degree of recommendation it provides for medical consultations.

Methods: Over a 5-day course, each of the study authors submitted the same questions to ChatGPT. The conditions evaluated were carpal tunnel syndrome (CTS), cervical myelopathy (CM), lumbar spinal stenosis (LSS), knee osteoarthritis (KOA), and hip osteoarthritis (HOA). Answers were categorized as either correct, partially correct, incorrect, or a differential diagnosis. The percentage of correct answers and reproducibility were calculated. The reproducibility between days and raters were calculated using the Fleiss κ coefficient. Answers that recommended that the patient seek medical attention were recategorized according to the strength of the recommendation as defined by the study.

Results: The ratios of correct answers were 25/25, 1/25, 24/25, 16/25, and 17/25 for CTS, CM, LSS, KOA, and HOA, respectively. The ratios of incorrect answers were 23/25 for CM and 0/25 for all other conditions. The reproducibility between days was 1.0, 0.15, 0.7, 0.6, and 0.6 for CTS, CM, LSS, KOA, and HOA, respectively. The reproducibility between raters was 1.0, 0.1, 0.64, -0.12, and 0.04 for CTS, CM, LSS, KOA, and HOA, respectively. Among the answers recommending medical attention, the phrases "essential," "recommended," "best," and "important" were used. Specifically, "essential" occurred in 4 out of 125, "recommended" in 12 out of 125, "best" in 6 out of 125, and "important" in 94 out of 125 answers. Additionally, 7 out of the 125 answers did not include a recommendation to seek medical attention.

Conclusions: The accuracy and reproducibility of ChatGPT to self-diagnose five common orthopedic conditions were inconsistent. The accuracy could potentially be improved by adding symptoms that could easily identify a specific location. Only a few answers were accompanied by a strong recommendation to seek medical attention according to our study standards. Although ChatGPT could serve as a potential first step in accessing care, we found variability in accurate self-diagnosis. Given the risk of harm with self-diagnosis without medical follow-up, it would be prudent for an NLP to include clear language alerting patients to seek expert medical opinions. We hope to shed further light on the use of AI in a future clinical study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541638PMC
http://dx.doi.org/10.2196/47621DOI Listing

Publication Analysis

Top Keywords

common orthopedic
12
seek medical
12
medical attention
12
cts lss
12
lss koa
12
koa hoa
12
answers
9
orthopedic diseases
8
medical
8
self-diagnose common
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!