Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: This cross-sectional study aimed to investigate the sectoral variance of optical coherence tomography (OCT) and OCT angiography (OCTA) glaucoma diagnostic parameters across eyes with varying degrees of refractive error.
Methods: Healthy participants, including individuals with axial ametropia, enrolled in the Hong Kong FAMILY cohort were imaged using the Avanti/AngioVue OCT/OCTA system. The OCT and OCTA parameters obtained include peripapillary nerve fiber layer thickness (NFLT), peripapillary nerve fiber layer plexus capillary density (NFLP-CD), and macular ganglion cell complex thickness (GCCT). Sectoral measurements of NFLT, NFLP-CD, and GCCT were based on sectors and hemispheres.
Results: A total of 1339 eyes from 791 participants were stratified based on spherical equivalent refraction: high myopia (<-6 D), low myopia (-6 D to -1 D), emmetropia (-1 D to 1 D), and hyperopia (>1 D). Multivariable broken stick regression models, accounting for age, sex, and signal strength, showed that all NFLT sectors except temporally, the inferior GCCT hemisphere, and half of the NFLP-CD sectors were more affected by ametropia-related covariates than the corresponding global parameters. As expected, the false-positive rates in those sectors were elevated. Finally, sector-specific axial length (AL) and spherical equivalent (SE) adjustments helped reduce the elevated false-positive rates.
Conclusions: The effect of optical magnification is even more prominent among sectors than the global parameters. AL- and SE-based adjustments should be individualized to each sector to mitigate this magnification bias effectively.
Translational Relevance: Identifying sectoral differences among diagnostic parameters and adopting these sector-based adjustments into commercial OCT systems will hopefully reduce false-positive rates related to refractive error.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506684 | PMC |
http://dx.doi.org/10.1167/tvst.12.9.10 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!