ROS-Responsive Self-Degradable DNA Nanogels for Targeted Anticancer Drug Delivery.

ACS Macro Lett

Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

Published: October 2023

Here, a reactive oxygen species (ROS)-responsive targeted anticancer drug delivery system was developed by embedding a nitrophenyl tetramethyl-dioxaborolanyl benzyl carbamate (NBC)-modified deoxyribonuclease I (DNase I) in a DNase-degradable aptamer-based DNA nanogel. The DNA nanogel was formed by hybridization of three types of building blocks, namely, Y-shaped monomer 1 with three sticky ends, Y-shaped monomer 2 with two sticky ends and an aptamer end, and a DNA linker with two sticky ends. Single doxorubicin (DOX) or ribonuclease A (RNase A) as well as the combination of DOX and RNase A were effectively loaded into the nanogels, wherein DOX was embedded into DNA skeleton, while RNase A was encapsulated into nanogel matrix. The blocked enzymatic activity of DNase I due to NBC modification could be restored upon intracellular ROS-triggered NBC deprotection, resulting in self-degradation of the nanogels to release both DOX and RNase A. Consequently, the DOX and RNase A coloaded nanogels significantly inhibited the proliferation of MCF-7 cells through a synergistic effect. To sum up, this DNA-based drug delivery system with ROS-responsive self-degradation properties should be promising for application in targeted and synergistic cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.3c00442DOI Listing

Publication Analysis

Top Keywords

drug delivery
12
sticky ends
12
dox rnase
12
targeted anticancer
8
anticancer drug
8
delivery system
8
dna nanogel
8
y-shaped monomer
8
dna
5
dox
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!