Clear-cell renal cell carcinoma (ccRCC) appears as the most common type of kidney cancer, the carcinogenesis of which has not been fully elucidated. Tumor heterogeneity plays a crucial role in cancer progression, which could be largely deciphered by the implement of scRNA-seq. The bulk and single-cell RNA expression profile is obtained from TCGA and study conducted by Young et al. We utilized UMAP, TSNE, and clustering algorithm Louvain for dimensionality reduction and FindAllMarkers function for determining the DEGs. Monocle2 was utilized to perform pseudo-time series analysis. SCENIC was implemented for transcription factor analysis of each cell subgroup. A series of WB, CFA, CCK-8, and EDU analysis was utilized for the validation of the role of MT2A in ccRCC carcinogenesis. We observed higher infiltration of T/NK and B cells in tumorous tissues, indicating the role of immune cells in ccRCC carcinogenesis. Transcription factor analysis revealed the activation of EOMES and ETS1 in CD8 + T cells, while CAFs were divided into myo-CAFs and i-CAFs, with i-CAFs showing distinct enrichment of ATF3, JUND, JUNB, EGR1, and XBP1. Through cell trajectory analysis, we discerned three distinct stages of cellular evolution, where State2 symbolizes normal renal tubular cells that underwent transitions into State1 and State3 as the CNV score ascended. Functional enrichment examination revealed an amplification of interferon gamma and inflammatory response pathways within tumor cells. The consensus clustering algorithm yielded two molecular subtypes, with cluster 2 being associated with advanced tumor stages and an abundance of infiltrated immune cells. We identified 17 prognostic genes through Cox and LASSO regression models and used them to construct a prognostic model, the efficacy of which was verified in multiple cohorts. Furthermore, we investigated the role of MT2A, one of our hub genes, in ccRCC carcinogenesis, and found it to regulate proliferation and migration of malignant cells. We depicted a detailed single-cell landscape of ccRCC, with special focus on CAFs, endothelial cells, and renal tubular cells. A prognostic model of high stability and accuracy was constructed based on the DEGs. MT2A was found to be actively implicated in ccRCC carcinogenesis, regulating proliferation and migration of the malignant cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10142-023-01225-7 | DOI Listing |
Toxicol Appl Pharmacol
January 2025
Department of Urinary Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi' an 710004, China. Electronic address:
Centromere protein K (CENPK) is a newly identified malignancy-related gene that exhibits differential expression in various cancers and plays a crucial role in carcinogenesis. However, it remains uncertain whether CENPK is involved in clear cell renal cell carcinoma (ccRCC). This work aimed to unveil the expression, clinical significance, biological functions, and regulatory mechanisms of CENPK in ccRCC.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Clinical Genetics, The Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China.
Neural precursor cell expressed developmentally down-regulated 4-like (NEDD4L) is an HECT (homologous to E6AP C terminus)-type E3 ubiquitin ligase. As previously documented, bioinformatics analysis revealed is downregulated in clear cell renal cell carcinoma (ccRCC). However, the target substrate regulated by NEDD4L in ccRCC remains unknown.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
Mol Pharm
November 2024
State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China.
T-cell immunoglobulin and mucin domain-3 (TIM3) is an immune checkpoint that plays a negative regulatory role in the immune response. TIM3-targeted drugs inhibit this negative regulation, thereby modulating the level of immune response activation. In the previous investigation, several peptides targeting TIM3 were identified through screening from a phage peptide library.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China.
Clear cell renal cell carcinoma (ccRCC) is a common genitourinary malignancy characterized by dysregulated cellular metabolism leading to aberrant glucose metabolism, fatty acid accumulation, and excessive reactive oxygen species production. ccRCC cells exhibit an augmented oxidative stress response. Complex interactions between iron metabolism and lipid homeostasis in ccRCC cells require a counteracting response that enables ferroptosis evasion and survival maintenance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!