Brain inflammation is regarded as one of the leading causes that aggravates secondary brain injury and hinders the prognosis of ischemic stroke. After ischemic stroke, high quantities of peripheral neutrophils are recruited to brain lesions and release neutrophil extracellular traps (NETs), leading to the aggravation of blood-brain barrier (BBB) damage, activation of microglia, and ultimate neuronal death. Herein, a smart multifunctional delivery system has been developed to regulate immune disorders in the ischemic brain. Briefly, Cl-amidine, an inhibitor of peptidylarginine deiminase 4 (PAD4), is encapsulated into self-assembled liposomal nanocarriers (C-Lipo/CA) that are modified by reactive oxygen species (ROS)-responsive polymers and fibrin-binding peptide to achieve targeting ischemic lesions and stimuli-responsive release of a drug. In the mouse model of cerebral artery occlusion/reperfusion (MCAO), C-Lipo/CA can suppress the NETs release process (NETosis) and further inhibit the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway in an ischemic brain. In addition, MCAO mice treated with C-Lipo/CA significantly mitigated ischemic and reperfusion injury, with a reduction in the area of cerebral infarction to 12.1%, compared with the saline group of about 46.7%. These results demonstrated that C-Lipo/CA, which integrated microglia regulation, BBB protection, and neuron survival, exerts a potential therapy strategy to maximize ameliorating the mortality of ischemic stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c03390DOI Listing

Publication Analysis

Top Keywords

ischemic stroke
16
ischemic
9
neutrophil extracellular
8
extracellular traps
8
cyclic guanosine
8
guanosine monophosphate-adenosine
8
monophosphate-adenosine monophosphate
8
monophosphate synthase-stimulator
8
synthase-stimulator interferon
8
interferon genes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!